Category: Industrial

ISO 4406 rating

iso_4406_rating

Is the ISO 4406 rating important?

Yes, it is very important!

The ISO 4406 rating tells us the cleanliness level of our lubricant. It tells us the number of particles that can pass through a 4, 6 and 14 micron rating.

However, the value on the ISO rating does not represent the number of particles. On the contrary, it represents the range in which the number of particles can lie.

 

One key point to remember is that the rating will always change from the time that the sample was taken to the date that the results were processed.

Therefore, it is a good idea to use the sample result as a guide as estimate a bit higher for the real value of your lubricant.

 

Check out our article which goes into more detail about ISO 4406.

 

Matt Spurlock CLS, CMRP, MLE explains further about redefining the ISO code in his article entitled; "A Twist on Particle Evaluation: Redefining the ISO Cleanliness Code". 

 

ISO-4406-chart

Filter rating

filter

Is the filter rating important?

Yes! It is very important.

Usually, the OEM of the equipment specifies the filter rating (and even the filter material in some cases). These ratings help us to keep out particles of larger sizes that may cause damage to the equipment either through wear or clogging of fine clearances.

Some filters allow us to monitor the differential pressure. This is the pressure between the outside of the filters and inside and as this approaches the warning limits, we know that a filter change is needed in the near future.

However, there are times when there is no warning and the filter goes into bypass. When a filter goes into bypass, this means that the filter is no longer keeping back the larger particles. This can be catastrophic for the equipment as a higher concentration of contaminants can now enter the system and damage it.

It is common practice to change the oil filter when the oil is being changed. In some instance, (especially depending on the environment), OEMs recommend changing the oil filters twice or more before the actual oil change.

Always consult with your owner’s manual about the maintenance practices before adopting your own.

Synthetic vs Mineral

syn_min

Should I use a synthetic oil in my equipment or just stick to mineral?

Check with your OEM first.

There are some OEMs that require a synthetic to be used but others that prefer mineral oils.

Typically, a synthetic oil (in industrial applications) tends to have longer operating hours compared to that of a mineral oil.

As such, lots of companies prefer to use synthetic oils as it leads to cost savings in the long term.

However, there are times when mineral oils are more cost effective.

For instance, if the component has to undergo maintenance (where the oil has to be drained) every 500 hours then it would not make sense to have a more expensive oil that lasts for 2000hours.

Before choosing whether mineral or synthetic, we need to do a cost benefit analysis of using both and then make an informed decision. If we can see savings by switching to a synthetic (such as energy, fuel or manpower savings) then this is definitely the way to go.

Mixing viscosities

mix_viscosities

Can I mix different viscosities of oils to get the viscosity that I want?

It can be done but this is not an ideal situation.

There are times when the only available viscosity is an ISO 46 (on a rig) but the equipment requires an ISO 68 and the new stock will not be delivered in time to avoid shutdown. Can the ISO 46 be used instead?

An ISO 46 oil is lighter in viscosity than an ISO 68 however, for most oils, there is a chart that depicts the viscosity of the oil at operating temperature. In these cases, one can consult this chart and determine if the viscosity at operating temperature will still fall within operating limits.

If we mix an ISO 46 with an ISO 68 oil we cannot be certain of where the new viscosity will fall especially if we do not know the ratios that are being used. There is a viscosity calculator that can help guide this decision available at: https://www.widman.biz/English/Calculators/Mixtures.html

This can be used as a guide and the actual values of the oil should be verified via oil analysis.

 

While this situation is not ideal, we need to remember that compatibility is also key.

As such, we should stick with the same line of lubricants that we being used. Typically, lubricant suppliers have the same formulation but change the viscosities for lubricants of the same line.

Stop production?

equip_shutdown

I can’t shut down the equipment but I know the oil has degraded significantly. What can I do?

Tough decisions!!!

There are times when production cannot be stopped such as when an order has to be fulfilled in a manufacturing facility. Before a decision is made, we need to understand the risks of not stopping production.

Can prolonged production cause a reduction in the overall quality of the final product or will it damage the equipment from working outside of its stipulated hours?

If we absolutely cannot shut down the equipment but the quality of oil has degraded, we need to firstly understand why the oil is degrading (especially if this is outside of its regular working hours).

Next, we need to identify which property of the oil has degraded, is it that the viscosity has increased / decreased, or the antioxidant levels have depleted significantly? By identifying the property that has degraded, we can choose the best way of replenishing this property.

 

Methods

There are a few methods that can be employed when trying to get the lubricant back to a healthy state however, as indicated above it is dependent on the property that has been degraded.

Cleanliness – if the ISO 4406 value has been increasing significantly this can hamper the performance of the lubricant. The clearances that the lubricant has to pass through can become blocked or the surfaces can experience an increased rate of wear.

One simple method of improving the cleanliness is through a kidney loop filtration system. This is an external system where the oil can be filtered through a filter cart and returned to the system.

Usually, this is a very effective method but one should investigate why the cleanliness values have become so high. Is it that the lubricant is being contaminated by the system, a process within the system or external factors?

 

Antioxidant levels – usually in turbines, this value decreases quickly especially if there is the presence of oxidation. Some users try to add antioxidants to their lubricant to increase the values. This is NOT recommended!!!

The composition of most turbine oils is 1% additive, 99% base oil. By adding any additive directly to the lubricant, we will be throwing the lubricant off balance and may induce other issues such as coagulation (clogged clearances) if the additive did not react well to the initial additives in the lubricant.

One of the easier ways of increasing the antioxidant levels without shutting down the machine is referred to as sweetening.

This process involves removing a percentage of the used oil (lubricant in the system) and then refilling the sump with new lubricant. The ratios can vary depending on the desired change in the antioxidant levels. It is important to note that the same lubricant should be used to ensure compatibility of the lubricants during the sweetening process.

Additionally, lab tests should be done frequently to monitor the changes in the antioxidant levels. The frequency of lab tests is highly dependent on the result turnaround time and budget available.