Tagged: esg

Food Grade Lubricants

Food_grade

Q: What are the classifications for Food grade lubricants?

If you’ve ever dealt with food grade lubricants in the past, you would have noticed that not all food grade lubricants are made to the same standard. When we think about it from a manufacturing standpoint, we can understand the need for varying specifications.

For instance, in a facility there are components that will come into contact directly with the food while there are others that will never make contact with the product being produced for consumption. As with all specifications, the prices of the lubricants created for regular non-food grade usage will differ from those that are specifically designed for food grade usage.

NSF Standards

NSF International is the body responsible for protecting and improving global human health. They also facilitate the development of public health standards and provide certifications that help protect food, water, consumer products and the environment.

Here are the different specifications for each of the food grades (used in most countries)1:

NSF H1 – General or Incidental Contact

NSF H2 – General – no contact

NSF H3 – Soluble oils

NSF HX-1 – Ingredients for use in H1 lubricants (incidental contact) [usually additives]

NSF HX-2 – Ingredients for use in H2 lubricants (no contact) [usually additives]

NSF HX-3 – Ingredients for use in H3 lubricants (soluble contact) [usually additives]

 

Usually using a NSF certified lubricant goes hand in hand with an HACCP based food safety program (Hazard Analysis and Critical Control Points).

 

Here's a bit more info on the Categories and where they should be used3:

  • H1 - food grade lubricants used in food processing environments where there is a possibility of incidental contact.
  • H2 - non-food grade lubricants used on equipment and machine parts where there is no possibility of contact
  • H3 - food grade lubricants which are edible oils used to prevent rust on hooks trolleys and similar equipment.

 

ISO standards

There are ISO standards that govern food safety. These are;

ISO 22000 – developed to certify food safety systems of companies in the food chain that process or manufacture animal products, products with long shelf life and other food ingredients such as additives, vitamins and biocultures2.

ISO 21469 – specifies the hygiene requirements for the formulation, manufacture and use of lubricants that may come into contact with products during manufacturing2.

 

 References:

  1. Quick Reference Guide to Categories, NSF USDA. https://info.nsf.org/USDA/categories.html#H1
  2. International Regulations for Food Grade Lubricants. Richard Beercheck. Lubes N Greases Europe- Middle East-Africa. June 2014. https://d2evkimvhatqav.cloudfront.net/documents/nfc_int_regulations_food_grade_lubricants.pdf?mtime=20200420102000&focal=none
  3. Chemistry and the Technology of Lubricants Third Edition by Roy M. Mortier, Malcom F. Fox, Stefan T. Orszuilk (Editors), Chapter 8 Industrial Lubricants, C. Kajdas et al. Springer Dordrecht Heidelberg London New York. DOI 10.1023/b105569

EALs?

EALs

Q: What makes a lubricant Environmentally Friendly?

There are many definitions of environmentally friendly. For instance, a lubricant can be environmentally friendly if it doesn’t pollute the environment which can either be understood as low toxicity or a reduced number of times that the oil is disposed.

However, there are three main factors which are considered when deeming a lubricant environmentally friendly2;

  1. Speed at which the lubricant biodegrades if introduced into nature
  2. Toxicity characteristics that may affect bacteria or aquatic life
  3. Bioaccumulation potential

Biodegradability

Biodegradability is defined as the measure of the breakdown of a chemical or chemical mixture by micro-organisms. It is considered at two levels namely;

  1. Primary biodegradation - loss of one or more active groups renders the molecule inactive with respect to a particular function
  2. Ultimate degradation – complete breakdown to carbon dioxide, water and mineral salts (known as mineralisation)3

Biodegradability is also defined by two other operational characteristics known as:

  1. Ready Biodegradability – occurs where the compound must achieve a pass level on one of the five named tests either, OECD, Strum, AFNOR, MITI or Closed Bottle3
  2. Inherent Biodegradability – occurs when the compound shows evidence in any biodegradability test.3

 

Toxicity

The toxicity of a lubricant is measured by the concentration of the test material required to kill 50% of the aquatic specimens after 96 hours of exposure (also called the LC50)1

 

Bioaccumulation

The term bioaccumulation refers to the build-up of chemicals within the tissues of an organism over time. Compounds can accumulate to such levels that they lead to adverse biological effects on the organism. Bioaccumulation is directly related to water solubility in that the accumulations can be easily soluble in water and not move into the fatty tissues where they become lodged.

 

Common Base Oils

There are three of the most common base oils that are Environmentally Acceptable2:

  1. Vegetable Oils
  2. Synthetic Esters
  3. Polyalkylene Glycols (PAGs)

These all have low toxicities and when blended with additives or thickeners for the finished lubricant, they should be retested to ensure that the additives / thickeners have not compromised the environmentally acceptable limits.

 

Labelling

Some lubricants can carry the “German Blue Angel Label” if all major components meet OECD ready biodegradability criteria and all minor components are inherently biodegradable.

Based on the requirements by Marpol, the International Maritime Organization (IMO) and current legislation from the European Inventory of Existing Commercial Chemical Substances (EINECS), a product may be considered acceptable if it meets the following requirements:

  • Aquatic toxicity >1000ppm (50% min survival of rainbow trout)
  • Ready biodegradability > 60% conversion of test material carbon to CO2 in 28 days, using unacclimated inoculum in the shake flask or ASTM D5846 test 1.

 

References:

  1. Lubrication Fundamentals Second Edition, Revised and Expanded. D.M. Pirro (Exxon Mobil Corporation Fairfax, Virginia), A.A. Wessol (Lubricant Consultant Manassas, Virginia). 2001.
  2. United States Environmental Protection Agency Office of Wastewater Management Washington, DC 20460. Environmentally Acceptable Lubricants. https://www3.epa.gov/npdes/pubs/vgp_environmentally_acceptable_lubricants.pdf
  3. Chemistry and Technology of Lubricants 3rd Edition, Chapter 1, R.M. Mortier, M.F. Fox, S.T. Orszulik)