Tagged: strategic reliability solutions

FZG Ratings

FZG

Q: What does FZG mean and why do gear oils have a rating?

FZG stands for “Forschungsstelle für Zahnräder und Getriebebau”, Technische Universität München (Gear Research Centre, Technical University, Munich), Boltzmannstraße 15, D-85748 Garching, Germany.

There are several FZG tests and these vary to establish different things. We will explore the two most common tests and what they mean.

The FZG tests were designed to accurately determine the types of gear failures that were influenced by scuffing, low speed wear, micropitting and pitting1. While there are load other tests for gear oils (such as Timken OK test) these do not accurately identify the actual failure stages that gears experience.

FZG A/8.3/90

One of the most commonly used FZG test is the FZG A/8.3/90 according to DIN ISO 14635-1. This is mainly used for evaluating the scuffing properties of industrial gear oils2. What do the numbers in the test mean?

The “A” represents an A-type gear with Pinion face width = 20mm, center distance = 91.5mm, number of teeth (pinion) = 16, number of teeth (gear) = 24. These are used in the test and are loaded stepwise in 12 load stages between Hertzian stress of pC= 150 to 1800N/mm2.

The “8.3” represents the pitch line velocity of 8.3m/s in which the gears are operated for 15 minutes at each load stage.

The “90” indicates the starting temperature of the oil (90°C) in each load stage under conditions of dip lubrication without cooling.

After each load, the gear flanks are inspected for scuffing marks. However, the fail load stage is determined when the faces of all pinion teeth show a summed total width of damaged areas which is equal or exceeds one tooth width. In the gravimetric test, the gears are dismounted and weighed to determine their weight loss.

 

FZG A10/16.6R/90

The FZG A10/16.6R/90 on the other hand is used for automotive gear oils (GL4). It is the standard FZG gear rig test but the speed, load, load application and sense of rotation have been slightly altered.

The “A” represents an A-type gear however, these now have a reduced pinion face width to 10mm (from 20mm above).

The “16.6R” represents the increased speed of the pitch line velocity of 16.6m/s in which the gears are operated for 15 minutes at each load stage in a reversed sense of rotation.

The “90” indicates the starting temperature of the oil (90°C) in each load stage under conditions of dip lubrication without cooling.

 

FZG S-A10/16.6R/90

However, the FZG S-A10/16.6R/90 is the shock level test done for the GL5 oils. In this test the gears are directly loaded in the expected load stage and a PASS or FAIL is issued.

 

References:

  1. ISO 14635-1:2000 Gears- FZG test procedures- Part 1: FZG test method A/8,3/90 for relative scuffing load carrying capacity of oils.
  2. Test methods for Gear lubricants. Bernd-Robert Hoehn, Peter Oster, Thomas Tobie, Klaus Michaelis. ISSN 0350-350X GOMABN 47, 2,129-152 Stručni rad/Professional paper UDK 620.22.05 : 621.892.094 : 620.1.05

Flender Specs

Flender

Q: Why should I use a Flender spec oil?

A lot of users ask about the need to use a Flender approved lubricant for their equipment! For a gear oil to be Flender approved1 in one of its units, the oil must be of CLP* quality according to DIN 51517-3 and motor oils must meet and ACEA Classification E2, API CF/SF. Additionally, it must meet the minimum requirements as per their specified “Proofs of performance / minimum requirements table” where the lubricants are tested at approved laboratories.

*CLP (according to DIN 51517-3)2 refers to an oil that contains additives which protect from corrosion, oxidation and wear in the mixed friction zone.

The manufacturer must also guarantee performance of the lubricant both for new oil and used oil up to a permissible range as per the following:

  1. Mineral oils (API I & II and ester oils) shall be 10,000 operating hours (2 years max)
  2. Mineral (API III) and Synthetic (PAO & PAG) oils shall operate for 20,000 operating hours (4 years max)
  3. All oil must produce the minimum requirements with an average operating temperature of 80°C

The following are a list of tests required by Flender which must produce specified minimum results:

  1. FZG Scuffing test in accordance with DIN ISO 14635-1 (A/8.3/90)
  2. FE8 rolling bearing test in accordance with DIN 51819-3 (D-7, 5/80-80)
  3. FVA micropitting test FV A 54 VII
  4. Flender oil Foam test in accordance with ISO 12152
  5. Compatibility with internal coating
  6. Compatibility with outer coating
  7. Filterability test FFT 7300 Rev.3
  8. Compatibility with liquid sealing component

Flender specifies the viscosity in the series to be tested for the minimum requirements.1

 

The Flender approval process ensures that the lubricant being used has been tested and can withstand some degree of micropitting, scuffing, foaming and is compatible with the surfaces in which it comes into contact. Thus, this makes the Flender approved lubricant more desirable for systems which place emphasis on the compatibility of all materials in the equipment (such as elastomers, paints etc). In conclusion, if you do have a Flender gearbox or equipment, it would be wise to use the Flender approved lubricant as they have gone the extra mile to ensure that the lubricant can protect your equipment.

 

Users can access a listing of approved Flender lubricants here: https://www.flender.com/en/lubricants

 

References:

  1. Specification for the gear oil approval for FLENDER Gear units (AS 7300) link
  2. Trends in Industrial Gear Oils by Jean Van Rensselar (STLE, Tribology & Lubrication Technology Magazine February, 2013) link

Lubrication Regimes

Regimes

Q: Is there only one type of Lubrication regime?

There are actually 4 types of lubrication regimes that equipment can experience and each component usually experiences at least 3 within their lifetime!

As per Noria 2017, the four different types of lubrication are; Boundary Lubrication, Mixed Lubrication, Hydrodynamic Lubrication and Elastohydrodynamic Lubrication.

Essentially, the best type of lubrication regime is Hydrodynamic as it provides the most ideal environment for both the lubricant and the surface. However, there are instances where other types of regimes can exist due to a lack of lubricant or contaminants.

Most components experience Boundary Lubrication on start up where there isn’t a proper layer of lubrication between the two surfaces. As such, the asperities of the two surfaces touch and can create wear. When we look at surfaces under a microscope, we can see tiny asperities (which we can liken to sharp or jagged edges) which are prevalent along the surface.

Even though a surface may appear shiny and smooth, when we microscopically examine them, the actual surface has a lot of asperities. Imagine, if two rough surfaces were sliding against each other, like a piece of sand paper against a wall, eventually parts of the wall will be removed due to the asperities of both the sand paper and the wall.

As more oil is gradually introduced to the component, it begins to experience Mixed Lubrication. In this state, the oil film is still not fully formed and is a bit thicker in some places than others. There are some contact areas where the surfaces will still experience boundary lubrication as well as elastohydrodynamic or hydrodynamic lubrication.

During this period, wear occurs due to the areas that are still experiencing boundary lubrication. However, it can be considered a transition phase as the surfaces move from tone type of regime into another as the lubricant film gradually increases.

When the component is full immersed in the lubricant, it usually achieves Hydrodynamic Lubrication which allows for a full film to be formed between the two surfaces and there is no longer any contact with the asperities. This is one of the most ideal forms of lubrication as it greatly reduces the wear between the two surfaces and the oil film safeguards that these can easily slide over each other thus, decreasing the friction between them. In this type of lubrication, the oil wedge is maintained in all operating conditions and guarantees that the asperities of both surfaces do not interact with each other.

On the other hand, with Elastohydrodynamic Lubrication, something quite special occurs with the lubricant causing the component to deform slightly ensuring that the film is maintained between the two surfaces. This happens at the highest contact pressure and ensures that the asperities do not touch whilst maintaining the oil wedge.

This type of lubrication usually occurs when there is a rolling motion between two moving surfaces and the contact zone has a low degree of conformity (Noria. 2017). Essentially, Elastohydrodynamic lubrication occurs when the lubricant allows the contact surface to become elastically deformed while maintaining a healthy lubricant film between the two contact surfaces.

 

References:

Noria Corporation. 2017. Lubrication Regimes Explained. https://www.machinerylubrication.com/Read/30741/lubrication-regimes

 

EALs?

EALs

Q: What makes a lubricant Environmentally Friendly?

There are many definitions of environmentally friendly. For instance, a lubricant can be environmentally friendly if it doesn’t pollute the environment which can either be understood as low toxicity or a reduced number of times that the oil is disposed.

However, there are three main factors which are considered when deeming a lubricant environmentally friendly2;

  1. Speed at which the lubricant biodegrades if introduced into nature
  2. Toxicity characteristics that may affect bacteria or aquatic life
  3. Bioaccumulation potential

Biodegradability

Biodegradability is defined as the measure of the breakdown of a chemical or chemical mixture by micro-organisms. It is considered at two levels namely;

  1. Primary biodegradation - loss of one or more active groups renders the molecule inactive with respect to a particular function
  2. Ultimate degradation – complete breakdown to carbon dioxide, water and mineral salts (known as mineralisation)3

Biodegradability is also defined by two other operational characteristics known as:

  1. Ready Biodegradability – occurs where the compound must achieve a pass level on one of the five named tests either, OECD, Strum, AFNOR, MITI or Closed Bottle3
  2. Inherent Biodegradability – occurs when the compound shows evidence in any biodegradability test.3

 

Toxicity

The toxicity of a lubricant is measured by the concentration of the test material required to kill 50% of the aquatic specimens after 96 hours of exposure (also called the LC50)1

 

Bioaccumulation

The term bioaccumulation refers to the build-up of chemicals within the tissues of an organism over time. Compounds can accumulate to such levels that they lead to adverse biological effects on the organism. Bioaccumulation is directly related to water solubility in that the accumulations can be easily soluble in water and not move into the fatty tissues where they become lodged.

 

Common Base Oils

There are three of the most common base oils that are Environmentally Acceptable2:

  1. Vegetable Oils
  2. Synthetic Esters
  3. Polyalkylene Glycols (PAGs)

These all have low toxicities and when blended with additives or thickeners for the finished lubricant, they should be retested to ensure that the additives / thickeners have not compromised the environmentally acceptable limits.

 

Labelling

Some lubricants can carry the “German Blue Angel Label” if all major components meet OECD ready biodegradability criteria and all minor components are inherently biodegradable.

Based on the requirements by Marpol, the International Maritime Organization (IMO) and current legislation from the European Inventory of Existing Commercial Chemical Substances (EINECS), a product may be considered acceptable if it meets the following requirements:

  • Aquatic toxicity >1000ppm (50% min survival of rainbow trout)
  • Ready biodegradability > 60% conversion of test material carbon to CO2 in 28 days, using unacclimated inoculum in the shake flask or ASTM D5846 test 1.

 

References:

  1. Lubrication Fundamentals Second Edition, Revised and Expanded. D.M. Pirro (Exxon Mobil Corporation Fairfax, Virginia), A.A. Wessol (Lubricant Consultant Manassas, Virginia). 2001.
  2. United States Environmental Protection Agency Office of Wastewater Management Washington, DC 20460. Environmentally Acceptable Lubricants. https://www3.epa.gov/npdes/pubs/vgp_environmentally_acceptable_lubricants.pdf
  3. Chemistry and Technology of Lubricants 3rd Edition, Chapter 1, R.M. Mortier, M.F. Fox, S.T. Orszulik)

Base Oil Groups

Base_oil_groups

Q: How many Groups of Base oils are there?

There are 5 groups of base oils as defined by the American Petroleum Institute (API). However, between 2003-2010, the Association Technique de L’Industrie Européenne des Lubrifiants (ATIEL) (Europe) included Group VI - All polyinternalolefins (PiO).

Groups I-III are typically mineral oils while Groups IV-V are synthetic oils.

  • Group I: Solvent refined
  • Group II: Hydrocracked / Hydrotreated
  • Group III: Hydrocracked / Hydro-isomerized
  • Group IV: PAO Synthetics
  • Group V: All other Synthetics

Here is a table that shows the different groups.

Reference: Lubrication Fundamentals Second Edition, Revised and Expanded. D.M. Pirro, A.A. Wessol, Chapter 2.

 

Group I: <90% Saturates, ≥0.03% Sulphur, Viscosity Index: 80 to 120

These were characteristically the most popular initially since they were relatively inexpensive to produce (solvent refined) and used in non-severe, non-critical applications. This Group has more double bonds (carbon) which allows for an increase in stability of the carbon chain.

 

Group II: ≥90% Saturates, ≤0.03% Sulphur, Viscosity Index: 80 to 120

These are hydrocracked and higher refined. However, due to hydrocracking, the double bonds are reduced greatly which decreases the stability of the carbon chain. (A lot of turbine users would have noticed this change around 2010 when most Group I base oils were replaced by Group II base stock. These users saw increased varnish as the oils did not have the level of solubility that they did before!).

Group II+: (yes, this exists!) These have VIs of 110-120 with improved low temperature and volatility Characteristics.

 

Group III: ≥90% Saturates, ≤0.03% Sulphur, Viscosity Index ≥ 120

There is an argument that this group should be placed in the synthetic category. However, by definition, this group is the severely hydrocracked and highly refined crude oil which can be used in semi-synthetic applications as it has similar properties to that of synthetic oil.  These are also called synthesized hydrocarbons.

Group III+: These have VIs approaching (or in some cases exceeding) those of synthetic PAOs (some even go above 140). They are also very pure with almost non-existent levels of sulphur, nitrogen, aromatics and olefins. Typically, Gas to liquid base oils can be found in this group as it approaches the Group IV categorization.

 

Group IV: Polyalphaolefins – these are very stable, uniformed molecular chains where there is a reduction in the coefficient of friction. Most are formed through oilgomerisation.

 

Group V: Ester and other base stocks not included in Groups I-IV such as silicone, phosphate esters, PAGs, Polyol esters, Biolubes and Naphthenics.

 

References:

  1. Chemistry and Technology of Lubricants 3rd Edition, Chapter 1, R.M. Mortier, M.F. Fox, S.T. Orszulik)
  2. Lubrication Fundamentals Second Edition, Revised and Expanded. D.M. Pirro (Exxon Mobil Corporation Fairfax, Virginia), A.A. Wessol (Lubricant Consultant Manassas, Virginia). 2001.

PAOs vs PAGs

PAO_vs_PAG

Q: What’s the main difference between PAOs & PAGs?

Let’s start off with definitions!

PAO: Polyalphaolefin

PAG: Polyalklene Glycol

While both are synthetic oils they are classified under different Groups of Base oils. PAOs have their own Base oil Group IV while PAGs fall into the Group V (catch all).

PAOs

PAOs are actually hydrogenated oligomers of an α-olefin and there are different methods of oligomerisation. Due to this process, PAOs have very good low temperature properties and the products are wax free! Additionally, their lower volatilities also allow them to operate over a wide temperature range. Usually, they can be used in a lot of versatile applications such as gearboxes, screw compressors, fans, motors and even automotive!

However, PAOs have a low polarity which gives rise to poor solvency of polar compounds and issues with seal performance.1

PAGs

On the other hand, PAGs can differ depending on their structure. For instance, Ethylene is water soluble while Propylene is not, however, neither are oil soluble. Both experience significant chemical reactions producing sludge like deposits when mixed with mineral oil.

Usually, their properties include a wide viscosity range, low pour points, good lubricity, low toxicity and non-flammable in aqueous solutions. PAGs are typically always found in fire-resistant hydraulic fluids as well as industrial gear oils, compressor lubricants, heat transfer liquids and metalworking fluids.1

Compatibility

Both products need to be tested for compatibility with mineral oils before any mixing occurs. Additionally, most lubricant suppliers deem PAOs & PAGS as “filled for life” solutions which last for a longer time compared to mineral oils. Typically, the purchase of these products are more expensive than mineral oils, however if one looks at the cost of waste disposal and reduced downtime (due to decreased shutdowns for oil changes) the overall cost of the lubricant is by far less than that of mineral oil.

 

References:

  1. Chemistry and Technology of Lubricants 3rd Edition, Chapter 2, R.M. Mortier, M.F. Fox, S.T. Orszulik

My MLE Journey

My MLE Journey

Ever since the MLE (Machinery Lubrication Engineer) exam was launched in April 2019, I was intrigued by it! It provided a certification where the dynamic duo of reliability and asset managers could be combined and infused with elements of lubrication and oil analysis. The perfect combination! However, since its launch, there have only been a couple of public sittings where the exam has bene conducted. Unfortunately for me, this would have required me to travel to the US for at least a week and run my business remotely. Every session that was announced directly clashed with my schedule and it was almost impossible for me to attend a session that didn’t clash with my crazy schedule.

Enter the C-19 pandemic that we’ve been facing that began in March 2020 (for us in Trinidad when our borders were closed). This pandemic caused (some much needed) downtime for all of us and helped to revolutionize the industry by allowing advancements in technology to finally be accepted. During the downtime, I decided to start studying for the MLE Exam with 5th Order Industry LLC. What a surprise, I had in store for me! After starting the course, I realized, I knew nothing about lubrication in the past! It was a definite eye opener and made me aware of the number of elements that I took for granted during my entire lubrication career.

Michael Holloway CRL, LLA (I,II), MLT (I,II), MLA (I,II, III), OMA, CLS, MLE was a great teacher and offered me assistance in all the areas in which I was unclear. He was also extremely responsive to all of questions at weird hours of the day when I got the time to study for the exam. His guidance was paramount to me achieving the MLE certification! The flexibility of On Demand modules allowed me to learn at my own pace and ensure that I understood each area before moving on to the next. The unique style of the delivery of the class really ensured that I benefitted from the bulk of the information provided as it allowed me to apply the knowledge in real life practical situations.

what_is_MLE

What exactly is the MLE?

The MLE exam was launched in April, 2019 along with the ICML 55.1 standard. Part 1 of the ICML 55 standard speaks to Asset Management, requirements for Optimized Lubrication of Mechanical Physical Assets. The MLE was mapped to this ICML 55.1 standard. This allows personnel within organizations who are studying for this exam to become more prepared for eventually attaining the ISO 55001 certification for their organization. The ICML 55.1 standard was drafted using the ISO 55001 as a guide however the 55.1 standard fills the gap with specific requirements and guidelines to establish, implement, maintain and improve consistent lubrication management systems and activities.

 

The MLE Body of Knowledge consists of 24 areas of knowledge and can be found here in greater detail. Additionally, the well documented Domain of knowledge is also accessible here.

The 24 areas for the BoK include:

  1. Asset Management, ISO 55001 & ICML 55; Basic Elements (3%)
  2. Machine Reliability; Basic Elements (5%)
  3. Machine Maintenance; Basic Elements (5%)
  4. Condition-based Maintenance; Basic Elements (5%)
  5. Tribology, Friction, Wear and Lubrication Fundamentals; Basic Elements (5%)
  6. Lubricant Formulation for Machine Types to achieve Optimum Reliability, Energy Consumption, Safety and Environmental Protection; Basic Elements (5%)
  7. Job and Task Based Skills / Training related to Lubrication and Reliability by User Organizations (4%)
  8. Lubrication Support Facilities needed in Plants and Work Sites (3%)
  9. Risk Management for Lubricated Machines; Basic Elements (4%)
  10. Optimum Machine Modifications and Features Needed to Achieve and Sustain Reliability Goals (5%)
  11. Lubricant Selection for Optimum Reliability, Safety, Energy Consumption and Environmental Protection based on Machine Type and Application (4%)
  12. Lubrication related Planning, Scheduling and Work Processing (4%)
  13. Periodic Lubrication Maintenance Tasks (4%)
  14. Inspection of Lubricated Machines for Optimum Reliability, Safety, Environmental Protection and Condition Monitoring (5%)
  15. Lubricant Analysis and Condition Monitoring for Optimum Reliability Objectives (8%)
  16. Fault/Failure Troubleshooting, Root Cause Analysis (RCA) and Remediation (5%)
  17. Supplier Compliance / Alignment and Procurement of Services and Products (3%)
  18. Waste and Used Lubricant Management and Environmental Compliance (3%)
  19. Energy Conservation and Environmental Protection (3%)
  20. Health and Safety (3%)
  21. Oil Reclamation, Decontamination, De-varnishing & Additive Reconstruction (3%)
  22. Lubrication during Standby, Storage and Commissioning (2%)
  23. Program Metrics (5%)
  24. Continuous Improvement (4%)
Candidate_req

Candidate requirements

As per ICML, candidates require at least 5 years education (post-secondary) or On-the-Job training in one or more of the following fields: Engineering, Mechanical Maintenance, Maintenance Trades, Lubrication, Oil Analysis and / or Condition Monitoring (Mechanical Machinery).

There are no prerequisites of an Engineering Degree or prior ICML certifications to attain the MLE certification. However, there are overlaps in the BoKs for the MLA & MLT exams that would prove useful in preparing for the MLE exam.

exam_scheduling

Scheduling the Exam

Once I completed the course from 5th Order Industry, I was awarded my Certificate of Completion which stated that I had achieved the required 40 hours of preparation for the exam. Looking back on it now, I spent a lot more than 40 hours preparing for the exam! In addition to completing the courses online, I started reading documents, manuals and books all outlined in the Domain of Knowledge (mentioned above).

In essence, it took me approximately 3 and a half months to fully prepare for this exam! It’s such a lengthy time span since I was studying at my own pace which the On Demand modules allowed me to do and I wanted to make certain that I was ready! After completing the online courses, it took me an additional week to schedule my exam as I had to make sure that there would be no urgent order of business during my 4 hour isolation and that I had reviewed at least 5 times the material covered!

To schedule the exam, one has to go to the ICML site. Then choose the mode of delivery (I chose Online of course and not Paper based). The site then allows you to choose the exam that you are applying for while giving you the guidelines that are specific to the exam type chosen (Online or Paper Based). For the Online sessions, they allow the candidates to verify whether their computer meets the requirements by clicking on some links provided.

After the exam type is selected, the candidate is moved to another page where they are required to provide some confirmations and upload their training certificate from one of the approved training providers. After submitting this information, the candidate is then directed to another page to fill out their profile information and make payment. An email will be received with the receipt from ICML. Afterwards, you will receive another email from Examity providing a link to fill out your profile and schedule your exam.

Exam_day

Exam day

The MLE exam spans a duration of 4 hours. These can pass in the blink of an eye in the exam room! For the exam, be sure to login at least 15 minutes before the scheduled time of your exam. Bring along a form of National Identification (ensure that the expiry date is on the same side as your picture). In my case, my National ID card has my picture on one side and all the details on the other side. The Proctor had to ask me for another form of ID and since my Passport had expired (the renewal date passed during the Quarantine Period!), I had to use my Driver’s permit which was upstairs! It took a bit of shuffling around (frantically, I’ll say!) but the Proctor was able to use my Driver’s permit after I retrieved it.

The desk area must be clean with no additional items. The only items on my desk were my 2 forms of ID. The Proctor will ask to view the entire room and ensure that all doors are closed. There is no need to walk with a calculator as one will be available in the virtual exam room on the screen as well as other tools that may be required. For this exam, you just need to walk with your brain, selection skills and your virtual knowledge base! The exam allows candidates to flag questions that they are unsure about and come back to them at a later time (which was absolutely terrific for me)!

first_mle

The Results

After completing the exam, the candidate has to inform the Procter that they have finished and then submit their answers. Thereafter begins the dreaded wait for the results! To my surprise, I got these results in two days after completing the exam! I can tell you, there was a lot of hesitation before opening that email! The email contained the results (yes I did pass! Yay!) and the score for each of the 24 sections of the exam.

At the time of writing this article, I am the first MLE in the entire Caribbean (I had to check twice to make sure)! I would highly recommend the MLE exam for lubrication professionals who want to challenge themselves and personnel within the reliability and asset management sectors who have a passion for lubrication. It is a wonderful exam and the knowledge that it will expose you to will be phenomenal!

 

Check out this article where our feedback was published by ICML!

EasyRCA!

EasyRCA

Recently, most of our concerns stem around getting stuff done faster but wanting the same quality result. For instance, when loading a web page, we expect it to be loaded in one second and use the next five seconds to browse the content and find what we’re looking for. Let’s take a step back and think about loading a webpage ten or fifteen years ago, using a dial up internet connection. I can guarantee you that it took a lot longer than two minutes!

Much of this, “need for speed” has been integrated into our working life where we now have apps that can take vibration measurements in a couple of seconds whereas in the past it took a couple of hours and a few technicians to get the correct reading and then analyse it. The team at Reliability Center Inc, has realized this change in dynamics and are introducing a new tool that steps up to the plate in more ways than one!

The EasyRCA tool was recently launched to allow everyone access to an RCA tool that is (as the name implies) easy to use. The tool is very intuitive and requires minimal training. If a user can click the Enter key on the keyboard or hover above the icons then they can use the tool. The only thing that is required is a stable internet connection and a device with a decent battery life.

One of the first things that stand out with the tool is the use of colour and easy to understand icons! Most tools within the industry shy away from colour but the use of colour to highlight the types of roots (Physical, Human or Systemic) and the stage (Event, Mode, Hypothesis) allows the RCA tree to be easily distinguished and more appealing to the eye.

Figure 1: Snapshot of 5 Why analysis using the EasyRCA Tool
Figure 1: Snapshot of 5 Why analysis using the EasyRCA Tool

The next interesting feature is that the user can choose the type of analysis that they require! That’s right, the user can choose from the sturdy Causal Tree, to the ever popular 5 Why or the Fishbone (utilizing the 6M method). With each of these types of RCA, the user can add more boxes, move them around the page to group them better or even delete those that they deem irrelevant. The user has full control of the software!

Figure 2: Snapshot of the Fishbone Analysis (6M) using the EasyRCA Tool
Figure 2: Snapshot of the Fishbone Analysis (6M) using the EasyRCA Tool

If this wasn’t enough to allow easy manoeuvrability, there is even a little “brain” that lights up orange on the screen. This is the virtual assistant and will light up whenever it “thinks” that it can offer assistance through templates from the library. The templates in the library span 50 years of experience that have been built in to allow users a guide for completing RCAs.

Figure 3: Snapshot of the Analysis Assistant using the EasyRCA Tool
Figure 3: Snapshot of the Analysis Assistant using the EasyRCA Tool

What about using the tool to print out a report? Of course the team at Reliability Center Inc thought about this! When performing an RCA, we need to provide a report to all involved! The EasyRCA Tool allows users to produce a report which is downloaded into Microsoft Word. This allows the user to make even more changes if necessary. This report includes all of the pictures / pieces of evidence that were attached during the hypothesis verification process.

Figure 4: Snapshot of the Table of Contents produced by the EasyRCA Tool
Figure 4: Snapshot of the Table of Contents produced by the EasyRCA Tool

Another very cool feature is that it allows teams to work in real time! For instance, if we have team members scattered across the globe (or around the table), any change that is made by a team member is reflected instantly in all open applications of that particular project in the EasyRCA Tool. When we set up a project, tasks are assigned to team members (who are alerted via email). Thus, each team member can have access to the project, once they have been assigned.

Here’s a quick snapshot of a Causal Tree in the EasyRCA software:

Figure 5: Snapshot of a Pump Failure RCA utilizing a Logic Tree in the EasyRCA software
Figure 5: Snapshot of a Pump Failure RCA utilizing a Logic Tree in the EasyRCA software

The EasyRCA Tool is like the baby brother to the PROACT RCA software and allows analysts with little training to adapt this tool and still get results that add value!  And, best of all, you can get started immediately.

Feel free to book a demo of the EasyRCA tool and check out the family of tools as they keep expanding to help better serve the industry!

Expired grease?

expired_grease

Are there any signs that my grease has expired?

There are a lot of signs to tell if grease has expired!

Some of the signs include:

  • Separation of the oil from the thickener
  • Change in the consistency of the NLGI grade.

Ideally, we should check the expiration date on the packaging and contact the lubricant manufacturer.

We must note that if the packaging has been removed or opened in some way, the expiration date may not be valid.

The expiration date on the product is the approximate shelf life of the product should the packaging remain intact and if stored in the recommended environment.

If these are compromised then the validity of the expiration date has also been compromised.

Outdoor Storage

storage

I have no room in the warehouse, can I store the oils outside until I get room?

It is never ideal to store lubricants outside exposed to the elements. However, there may be situations where this cannot be helped.

For instance, transformer oils are very sensitive to light and water.

If there is an option of at least storing one type of oil away from the elements, then this type of oil is at the top of the list.

If it has to be stored outside, then there are some measures that can be taken to ensure it is not compromised.

We can place a tarp over the product to ensure that the rain does not settle on the drums and they remain fairly dry.

They can also be stacked on pallets, so that they are not directly touching the ground. This way, water cannot enter the product.

Additionally, they can be stored such that the bungs are at a 9 or 3 o’clock position. In this position, if water falls on the top of the drum, it cannot accumulate by the bungs and seep into the product.

Once the packaging has been opened, the product can be considered open to contamination and anything that gets into the product will eventually get into the equipment.

Ideally, opened products should be stored in enclosed areas or have dedicated decanting systems.