Tagged: trinidad

The Difference Between Antiwear and Extreme Pressure Additives

The terms antiwear additives and extreme pressure additives are often used interchangeably, suggesting that they provide the same functions in a lubricant. This is not exactly true. While there are many similarities in how they function, both additives have distinct functions in protecting lubricants.

Both are film-forming additives (Bruce, 2012). Their functions are to reduce wear between two contacting surfaces or reduce friction to lower the heat produced between the two rubbing surfaces.

They can also be classified as boundary additives that can be temperature-dependent (EP additives) or non-temperature-dependent (Antiwear additives). They both function to mitigate against wear, which is usually caused during boundary lubrication where higher speeds, loads, or temperatures can cause contact with the asperities.

One of the significant differences, as noted by Mang & Dresel, 2007 is that antiwear additives are designed to reduce wear when the system is exposed to moderate stress. On the other hand, EP additives are much more reactive. These are used when the system’s stress is very high to prevent the welding of moving parts.

According to (Bruce, 2012), there are four main groups of commercially available EP additives based on the structures containing phosphorus, sulphur, chlorine, and overbased sulfonates. He explains that the phosphorus, sulphur, and chlorine-containing EP additives are activated by heat over a range of temperatures.

For instance, chlorine-containing EP additives are usually activated between 180-240°C, phosphorus-containing additives are activated at higher temperatures, and sulphur-containing additives operate at 600-1,000°C.

On the other hand, overbased sulfonates contain a colloidal carbonate that reacts with iron to form a thin-film barrier layer between tribocontacts. This protects the surface from direct contact and welding.

As we can see, antiwear and EP additives protect the surfaces between which the lubricant exists. However, they are activated differently and subsequently perform two different functions.

Antiwear additives protect against wear and are not temperature dependent, while EP additives are activated by high stress to prevent the welding of moving parts.

Both functions are essential to protecting the system from additional wear and ensuring it remains operational.

 

Want to read the entire article? Find it here in Precision Lubrication Magazine!

 

References

Bloch, H. (2009). Practical lubrication for industrial facilities, Second edition. Lilburn: Fairmont Press Inc.

Bruce, R. W. (2012). Handbook of Lubrication and Tribology, Volume II, Theory and Design, Second Edition. Boca Raton: CRC Press Taylor and Francis Group.

Coyle, C. L., Greaney, M. A., Stiefel, E. I., Francis, J. N., & Beltzer, M. (1991, Feb 26). United States of America Patent No. 4,995,996.

Mang, T., & Dresel, W. (2007). Lubricants and Lubrication, Second, Completely Revised and Extended Edition. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.

Mortier, R. M., Fox, M. F., & Orszulik, S. T. (2010). Chemistry and Technology of Lubricants, Third Edition. (C. Bovington, Ed.) Dordrecht Heidelberg: Springer Science+Business Media B.V. doi:10.1023/b105569_3

Pirro, D. M., Webster, M., & Daschner, E. (2016). ExxonMobil, Lubrication Fundamentals, Third Edition, Revised and Explained. USA: CRC Press Taylor and Francis Group.

Zhang, J., & Spikes, H. (2016). On the Mechanism of ZDDP Antiwear Film Formation. Tribol Lett, pp. 1–2.

Types Of Antiwear Additives and How They Work

There are many types of antiwear additives, but they typically all fall under the category of polar materials such as fatty oils, acids, and esters, according to Pirro, Webster & Daschner, 2016. According to Mortier, Fox, & Orszulik, 2010, several compounds can form surface films to help protect against friction and wear.

These include:

  • Oxygen-containing organic compounds (with a polar head that can adsorb to surfaces). These can include alcohols, esters, and carboxylic acids.
  • Organic compounds containing nitrogen groups
  • Organic sulphur compounds which can form reacted films at surfaces
  • Organic phosphorus compounds which can form reacted films at surfaces
  • Organic boron compounds which may form reacted films at surfaces
  • Organic molybdenum compounds which can form MoS2 film on surfaces
  • ZDDPs, which can form polymeric films on surfaces

While this is an exhaustive list, the more popular ones are listed below. In this next part of the article, we will also dive into how they function.

Organic Oxygen Compounds

According to Mortier, Fox, & Orszulik, 2010, these compounds usually include esters, alcohols and acids. These are generally responsible for improving the “oiliness” or reducing the friction for most lubricants. However, how does this work?

Carboxylic acids form metallic soaps with the contacting surfaces. According to Mortier, Fox, & Orszulik, 2010, some evidence suggests that the upper limit of friction coincides with the melting point of the metal soap. As such, when the upper limit of friction is reached, the metallic soap melts, protecting the surface and performing its antiwear function.

Interestingly, there has been a debate concerning whether these long-chain surfactant friction modifiers reduce friction by forming adsorbed films of monolayer thickness or if they form thick films equivalent to several or many multilayers.

Again, as per Mortier, Fox, & Orszulik, 2010, after experimenting, it was concluded that some of these types of additives form thick boundary films while others do not.

The thick boundary films result from the formation of insoluble iron (II) oleate on the rubbing surfaces. For metal oleates, this will only occur for metals lower than iron in the electrochemical series.

Thus, when speaking about organic oxygen compounds, they help to reduce the friction in lubricants by forming layers on the contacting surfaces.

Organophosphorus Esters

These types of esters have long been used as antiwear additives, according to Mortier, Fox, & Orszulik, 2010. There are two different types of reaction films which are typically formed:

  • Films derived from tricresyl phosphate which form thin films (0.1-2nm) consisting of low shear strength FePO4 and FePo4.2H2O
  • Films consisting of iron (III) monoalkyl/aryl phosphate oligomers are thicker (approximately 100-300nm) and polymeric.

It is important to note that for the tricresyl phosphate (TCP) to be effective, the presence of oxygen, water, and other polar impurities is necessary to form the reaction film. Typically, the hydrolysis of the ester occurs initially, which releases phosphoric acid. This is then critical in the formation of the surface oxide film.

Another noteworthy function of the ester of phosphoric acid is that it helps ensure the solubility of the product in the oil. It can also aid in rust protection by hydrolysis to the phosphoric acid.

During the formation of the film, there is a loss of an alkyl group by hydrolysis, which generates two P-O ligands for coordination. This phosphate anion, which was formed, has reduced oil solubility, which allows for the boundary layer of oil covering the metal surface.

Eventually, as the polymer continues growing, the film moves from a soft, viscous liquid to that of a glass-like solid. This glass-like solid allows the surfaces to stay separated, thus reducing wear.

Essentially, organophosphorus esters form films that can either be very thin or thicker and glass-like, depending on their nature. While they act as antiwear additives, they can also perform the function of rust inhibition in the appropriate environments.

Molybdenum Sulfur

Coyle et al., Patent No. 4,995,996, 1991 recognize Molybdenum disulphide as a lubricant additive and discuss its origins. They mention that molybdic xanthine typically decomposes under particular conditions to form the molybdenum sulfide on protected materials. The use of thiosulfenyl xanthates has also been formulated for particular ashless lubricants.

As per Mortier, Fox, & Orszulik, 2010, compounds such as MoDTC (molybdenum dithiocarbamate) or MoDDP (molybdenum dithiophosphate) typically react with the surfaces to produce the famous molybdenum disulphide. In this compound, there is an ease of shearing, which leads to unusually low coefficients of friction.

A synergistic relationship exists between MoDTC and ZDDP. While MoDTC does not form low friction layers independently, these layers are only formed when ZDDP is present. The layer of MoS2 is only formed on top of the glass of ZDDP reaction products. The ZDDP layer acts as a source of sulphur, reduces the oxidation of MoS2 and limits the diffusion of sulphur from MoS2 into the ferrous substrate.

Interestingly, Molybdenum disulphide (also commonly known as “Moly”) is extremely popular in grease applications especially in the mining industry. “Moly” is known for being a solid additive to grease thickeners for specific applications.

As seen above, it may not exactly be “Moly” added to the lubricant, but rather, it is only created when its parent compound decomposes and is formed.

Zinc Dialkyldithiophosphates (ZDDP)

These are the most commonly used antiwear additives on the market and are known by their chemical abbreviation ZDDP. Originally, ZDDP was developed as an antioxidant additive. However, it has been used in many applications, such as engine, hydraulic, and even circulating oils, as both an antiwear and antioxidant additive.

According to Bruce, 2012, The Ecole Centrale de Lyon / Shell Corporation collaboration made significant conclusions on ZDDP performance. This study shows that ZDDP produces a thin film of iron sulfide and zinc sulfide nearest to the metal surface. Next, there is a zinc polyphosphate layer, made up of long-chain zinc polyphosphates and then soluble alkylphosphates, closest to the oil layer.

According to Zhang & Spikes, 2016, at very high temperatures (above 150°C), ZDDP reacts slowly to form films on solid surfaces. This occurs despite the absence of rubbing and is called “thermal films .” However, at lower temperatures (below 25°C) in the presence of rubbing films in a ZDDP lubricant, these ZDDP films are generated more rapidly. These are called “tribofilms”. Based on analysis, it is suggested that both films have similar structures.

It has also been shown (through inelastic electron tunneling spectroscopy, IETS with Yamaguchi and Ryason) that secondary ZDDP is adsorbed much more readily than primary ZDDP. On the other hand, alkaryl ZDDP is hydrolyzed on adsorption onto aluminum oxide surfaces.

According to Mortier, Fox, & Orszulik, 2010, ZDDP reduces wear by forming relatively thick boundary lubrication films. These are usually 50-150nm thick and are based on a complex glass-like structure (as mentioned earlier). The figure below, taken from Mortier, Fox, & Orszulik, 2010, shows the structure of this ZDDP glass film.

Structure and composition of a ZDDP glass film (taken from Mortier, Fox, & Orszulik, 2010)

The strength of the ZDDP’s antiwear function lies in the structure of the alkyl groups. Chain branching and chain length have critical roles in this determination. Short-chain primary alkyl groups are more reactive than long primary alkyl groups.

As Mortier, Fox, & Orszulik, 2010, explain, the ZDDPs most efficient at antiwear film formation typically suffer depletion due to thermal effects. Under very high temperatures and/or long drain service, the most active ZDDP may not provide the best wear protection.

 

Want to read the entire article? Find it here in Precision Lubrication Magazine! 

What Are Antiwear Additives?

As the name suggests, antiwear additives help to prevent wear in one way or another. However, what makes them unique compared to other additives in lubricants? Why are they used more predominantly in specific applications than other applications? This article explores antiwear additives, why they are needed, and how they work.

What Are Antiwear Additives?

According to (Bloch, 2009), antiwear agents can also be called mild EP (Extreme Pressure) additives. In some cases, they may also act as antioxidant additives (depending on their chemical structure). In essence, antiwear additives protect against friction and wear when the surfaces experience moderate boundary conditions.

During moderate boundary conditions, the full film of the lubricant has not yet formed, and asperities on both surfaces can come into contact with each other. As such, antiwear additives can also be called boundary lubrication additives.

antiwear-addtives-work-2

Usually, these antiwear additives react chemically with the metal to form a protective layer. This layer or coating will allow the two surfaces to slide over each other with low friction and minimal metal loss. As such, antiwear additives have also adopted the nickname “anti-scuff” additives.

According to Pirro, Webster, & Daschner, 2016, the adsorbed film on metal surfaces is formed from long-chain materials. In these cases, the polar ends of the molecules attach to the metal while the projecting ends of the molecules remain between the surfaces.

Under mild sliding conditions, wear is reduced; however, under severe conditions, molecules can be rubbed off such that the wear-reducing effect is lost. When this happens, it is evident in the oil analysis data with the presence of wear metals in large quantities.

In essence, antiwear additives help protect the oil while reducing friction, protecting the surfaces, and, in some cases, enhancing the oil to be more resistant to oxidation. While they can perform these functions, it must be noted that there are many different types of antiwear additives.

 

Want to read the entire article? Find it here in Precision Lubrication Magazine!

Measuring Oil Viscosity

The viscosity of oil is one of its most essential characteristics. Thus, it is important to understand how this is measured and quantified. There are two main types of viscosity, dynamic (or absolute) and kinematic viscosity.

The dynamic viscosity measures the force required to overcome fluid friction in a film and is reported in centipoise (cP) or in SI units Pascal Seconds (Pa s) where 1 Pa s = 10 P (Poise). It can also be considered the internal friction of a fluid. This is usually used for calculating elastohydrodynamic lubrication related to rolling element bearings and gears.

On the other hand, the kinematic viscosity of a fluid is the relative flow of a fluid under the influence of gravity. Its unit of measure is centistokes (cSt) which in SI units is mm2/s, 1cSt = 1 mm2/s. (Mang & Dresel, 2007).

Kinematic Viscosity = Dynamic Viscosity / Density

Other units of measure for viscosity include; Saybolt, Redwood, and Engler, but these are less widely used than the cSt or cP, especially for lubricants.

Oil Viscosity Grades and Standards

One of the best-kept secrets about viscosity is that a particular grade often represents a range. When oils are classified, one may see an ISO 32 or ISO 220 and believe that the oil will have this exact viscosity (32 cSt or 220 cSt). However, this is not the case.

There are three general classifications where viscosity grades have particular ranges based on the fluid type. The fluid may behave differently in each application, hence the need for these three scales. However, there is a chart that allows users to convert the various scales into the one needed.

Engine Oil Classification (SAE J300)

As per the Society of Automotive Engineers (SAE), the SAE J300 standard classifies oils for use in automotive engines by viscosities determined at low shear rates and high temperature (100°C), high shear rate and high temperature (150°C) and both low and high shear rates at low temperature (-5°C to -40°C) (Pirro, Webster, & Daschner, 2016).

Engine manufacturers have widely used this system to aid in designing lubricants suited for these applications. As such, oil formulators also adhere to these classifications when engineering lubricants.

One will note the use of the suffix letter “W” in some of the grades below. These oils are intended for low ambient conditions, whereas those without the “W” are intended for oils that will not encounter low ambient conditions.

These are commonly described as multigrade (where the “W” is found between two numbers) and monograde oils (where the “W” is at the end or the grade is identified by a number only) in the table below.

The table shows that the viscosities must fall within a particular range to be classified. For instance, a 5W30 oil should meet the specifications of:

  • Low temperature, Cranking viscosity of 6600 cP at -30°C
  • Low temperature, Pumping Viscosity Max with No Yield Stress of 60,000 cP at -35°C
  • Low shear rate Kinematic viscosity at 100°C should be between 9.3 -12.5 cSt
  • High Shear rate viscosity at 150°C Max at 2.9 cP

One will notice the range of 9.3 to 12.5 cSt (at 100°C). This is where oils can be blended to either end of this scale but still achieve the classification of a 5w30 oil.

Axle and Manual Transmission Lubricant Viscosity Classification (SAE J306)

As per the SAE recommended practice J306, automotive manual transmissions and drive axles are classified by viscosity, measured at 100°C (212°F), and by the maximum temperature at which they reach the viscosity of 150,000 cP (150 Pa s) when cooled and measured in accordance to ASTM D2983 (Method of Test for Apparent Viscosity at Low Temperature Using Brookfield Viscometer). (Pirro, Webster, & Daschner, 2016).

The table below shows that for an SAE grade of 190, the kinematic viscosity must fall within the range of 13.5 to 18.5 cSt at 100°C. While most viscosities tend to fall mid-range of these values, it also indicates that if the lubricant achieves 18 cSt at 100°C, it can still be classified at an SAE grade 90.

The most common multigrade lubricants within this grade fall within the 80w90 or 75w140 classifications.

Another factor for these types of lubricants is API GL4 or GL5 ratings. It must be noted that a GL5 lubricant is recommended for hypoid gears operating under high-speed, high-load conditions.

On the other hand, a GL4 lubricant is usually recommended for the helical and spur gears in manual transmissions and transaxles operating under moderate speeds or loads. These should not be used interchangeably as the GL5 lubricants tend to adhere to the surfaces and may cause more damage in a GL4 application.

Figure 5: Automotive Gear Lubricant Viscosity Classification. Source: Lubrication Fundamentals, Third Edition Revised and Expanded by Pirro D. M., Webster M., and Daschner E. pg 52

Viscosity System for Industrial Fluid Lubricants

This classification was jointly developed by the ASTM and STLE (Society for Tribologists and Lubrication Engineers). Initially, the system was based on viscosities measured at 100°F but converted to viscosities measured at 40°C.

ASTM D2422 and ISO 3448 are the references for this system. In this system, it is clearer to see the variances in the ranges of viscosities. In this case, the mid-point of the range is used as the ISO viscosity. To determine the range of any ISO viscosity, one can calculate ±10% of the mid-point value to get the minimum and maximum values of the range.

Figure 6: Viscosity System for Industrial Fluid Lubricants. Source: Lubrication Fundamentals, Third Edition Revised and Expanded by Pirro D. M., Webster M., and Daschner E. pg 52

All of these systems can be represented in the figure below, where it is easy to calculate the oil viscosity using another system:

Figure 7: Various viscosity systems in one chart.

Factors That Affect Oil Viscosity

Similar to the molasses and water examples above, different factors can affect the viscosity of a liquid. For instance, water can assume other states depending on the temperature.

If water is at its freezing point (0°C), it can turn to ice but remains liquid at room temperature (around 20-30°C). Then, at 100°C, it can turn into a vapor. Its viscosity can change depending on the influencing factors.

Four factors affect oil viscosity:

  • Temperature
  • Pressure
  • Shear rate
  • Oil type, composition, and additives

Temperature

As seen with the example of the water above, when the temperature decreases, the water can turn to ice. Similarly, for lubricants, as the temperature drops, the viscosity increases. This means the oil will get thicker or more resistant to flow at lower temperatures. Likewise, as the oil heats up, it can become thinner.

This is similar to a block of ice melting as temperatures increase. Its viscosity will decrease, and the ice will turn to water. In this case, the internal molecules gain more energy with the increase in temperature, lowering the internal friction within the fluid. As such, the viscosity also decreases.

Since the oil’s viscosity will change with temperature, most OEMs will supply a temperature–viscosity chart for their equipment to help ensure the correct viscosity is used depending on the operating temperature.

In the figure below, gear oils of varying viscosities are plotted against the temperature for a particular piece of equipment. OEMs will typically specify the optimum operational viscosity range for their equipment.

It is then up to the lubrication engineers to determine the ideal viscosity based on the conditions of their equipment (this can vary depending on the application).

Figure 1: Temperature – Viscosity chart for Shell Omala S2 G (Source: Shell Lubricants TDS)
Figure 1: Temperature – Viscosity chart for Shell Omala S2 G (Source: Shell Lubricants TDS)

From the figure above, one can see that at 40°C, most of the gear oil grades correspond with their viscosities (ISO 68 corresponds with a 68 viscosity). However, at 0°C, an ISO 68 gear oil can become 1000 cSt, while at 90°C, this same grade of oil is around 11cSt.

Interestingly, all of the oils listed here can achieve a viscosity of 100cSt but at different temperatures, as shown below:

  • 32°C – ISO 68
  • 40°C – ISO 100
  • 47°C – ISO 150
  • 55°C – ISO 220
  • 63°C – ISO 320
  • 68°C – ISO 460
  • 75°C – ISO 680

Temperature is a significant influencing factor of viscosity, but it is not the only factor.

Pressure

The effects of pressure on a lubricant’s viscosity are often overlooked. However, the viscosity-pressure behavior has become part of the calculation for elastohydrodynamic films. In these cases, oil viscosity can rapidly increase with pressure.

One such instance occurs with metal-forming lubricants, which are subjected to high pressures such that the oil’s viscosity can increase tenfold (Mang & Dresel, 2007). As the pressure increases, viscosity also increases, protecting the surface in these lubricant films.

The very definition of viscosity alludes to pressure’s impact on Newtonian and non-Newtonian fluids. For example, with Newtonian fluids (regular lubricating oils), the shear rate is proportional to the applied shear stress (pressure) at any given temperature.

As seen above, the viscosity can be determined once the temperature remains the same. However, Non-Newtonian fluids, such as greases, only flow once a shear stress exceeding the yield point is applied (Pirro, Webster, & Daschner, 2016).

Hence, this is why the observed viscosity of grease is called its apparent viscosity and should always be reported at a specific temperature and flow rate.

Shear Rate

For Newtonian fluids, viscosity does not vary with shear rate (Pirro, Webster, & Daschner, 2016). In fact, per the definition of viscosity for Newtonian fluids (regular lubricating oils), viscosity is a constant proportionality factor between the shear force and shear rate. Thus, even when subjected to greater shear forces, the viscosity will not change for Newtonian fluids.

On the other hand, for non-Newtonian fluids, the viscosity is influenced by the shear rate. Some non-Newtonian fluids can include; pseudoplastic fluids, dilatant fluids, and a Bingham solid, the effects of shear rate on these fluids are shown in the figure below.

A Bingham solid is a plastic solid such as grease that only flows above a particular yield stress. It can be seen that pseudoplastic fluids decrease viscosity with an increasing shear rate, while dilatant fluids show an increase in viscosity with an increasing shear rate. (Hamrock, Schmid, & Jacobson, 2004)

Figure 2: Characteristics of different fluids as a function of shear rate vs. viscosity (a) and shear rate vs. shear stress (b). Source: Fundamentals of Fluid Film Lubrication by Hamrock, Schmid & Jacobson, page 102.
Figure 2: Characteristics of different fluids as a function of shear rate vs. viscosity (a) and shear rate vs. shear stress (b). Source: Fundamentals of Fluid Film Lubrication by Hamrock, Schmid & Jacobson, page 102.

The shear of a lubricant can influence its shear rate. Typically, longer-chain polymer viscosity index improvers can shear over time. When this happens, it can result in a decrease in oil viscosity. Similarly, non-Newtonian fluids, such as grease, experience a decrease in viscosity as a function of shear rate (Totten, 2006).

Another essential characteristic to note is whether a material is thixotropic or rheopectic. For a thixotropic material, if it is placed under a continuous mechanical load over a period of time, the viscosity will appear to decrease over this time.

However, the original viscosity is restored after a specific rest period, as shown in the figure below. On the other hand, for rheopectic materials, continuous shearing causes the viscosity to increase. (Mang & Dresel, 2007).

Figure 3: Flow characteristics of a thixotropic lubricant (Source: Lubricants and Lubrication edited by Theo Mang and Wilfried Dresel, page 30)

Oil Type, Composition, and Additives

Various oil types, compositions, and additives can influence a lubricant’s viscosity. For instance, the five groups of base oils all have varying characteristics, as shown in the figure below. One can note the differing viscosities for the various groups.

Figure 4: Base Stock property comparison (Source: Lubricants and Lubrication edited by Theo Mang and Wilfried Dresel, page 13)
Figure 4: Base Stock property comparison (Source: Lubricants and Lubrication edited by Theo Mang and Wilfried Dresel, page 13)

When a finished lubricant is made, it usually consists of a base oil and additives. Hence, the base oil will have a significant role in determining the final viscosity of the oil. However, with the advent of Viscosity Index Improvers, desired viscosities can be engineered regardless of the base oil type being used.

 

Want to read the entire article? Find it here in the Precision Lubrication Magazine!

What is Oil Viscosity?

Oil viscosity is the internal friction within an oil that resists its flow. It measures the oil’s resistance to flow and is one of the most important factors in lubricants. Viscosity is also defined as the ratio of shear stress (pressure) to shear rate (flow rate).

Understanding Oil Viscosity

Imagine walking through a swimming pool filled with water. While walking through the pool, your body experiences some resistance from the water. Now imagine walking through the same swimming pool, filled with molasses this time!

It takes someone much longer to wade through a molasses-filled pool than one filled with water. In this case, the molasses is more viscous than the water. Thus, it has a higher viscosity than water.

Viscosity_600x300_AMRRI

You can also apply this to using a straw for drinking water from a glass. Pulling the liquid from the cup will be easy using a big straw. However, getting the same liquid to the person using the straw would take longer if a thinner straw were used.

Engine Oil Analogy

We can draw this analogy to car engines over the last 30-40 years. These engines had larger clearances for the oil to flow throughout the engine. As such, most of these engines used a 50-weight (or straight 50) oil.

As the technology evolved, the size of the engines got smaller. The clearances also got smaller, and the engine oil was now required to flow faster, control the transfer of heat and contaminants and keep the engine lubricated.

A straight 50 oil could not pass through the smaller straw at the speed it should. This would be equivalent to the user using a smaller straw for drinking molasses. It could take a while!

However, if a lighter weight (or less viscous) engine oil was used (such as a 0w20 or 10w30), then this is like someone trying to drink water (0w20) with a smaller straw.

It will flow much faster than molasses (straight 50) with the same straw! The lighter-weight oil would also transfer heat and flow much faster than the heavier-weight (more viscous) oil.

 

Future Developments and Research in Oil Viscosity

As explained at the beginning of this article, the changes in technology (such as smaller engines) will demand more from lubricants, especially in viscosity. Thirty years ago, a 0w16 engine oil was unfathomable, but today, it is being integrated into our newer model vehicles.

Some of the concepts which will continue in the future can include:

  • Reducing viscosity – as seen in the examples above, with most pieces of equipment getting smaller, the need for lighter weight (lower viscosity) oils will continue as OEMs constantly evolve and push the boundaries of their equipment.
  • Measuring viscosity – traditionally, viscometers have always been used where the difference in the height of the liquid at particular temperatures (or under certain conditions) is measured. Given the advancements in technology, this may be subject to change very shortly into a more reliable and even more accurate method.
  • Viscosity-dependent parameters – temperature and pressure have the most significant impacts on the oil’s viscosity. However, some of these challenges can be overcome with the advent of viscosity index improvers. With enhancements in the formulation of viscosity index improvers, one can expect oils of varying viscosities to be used in parameters they could not have used in the past.
  • Alternative oils – more sustainable options are constantly being explored. Whether this lies in using plant-based oils or other alternative bio-based oils, these may introduce new ways or conditions under which different viscosities can exist.

Overall, viscosity is one of the most important characteristics of a lubricant. It can easily influence the impact of the oil on the internal surfaces of the equipment and its overall energy efficiency.

It is important to remember that oil viscosity should be determined by the application in which it is being used. Parameters such as temperature, pressure, and shear rate should all be considered when selecting the lubricant’s viscosity.

 

Want to read the entire article? Find it here in the Precision Lubrication Magazine!

Can Lube Oil Varnish be Eliminated? 

Varnish can be likened to cholesterol in the human body. It can build up in our arteries and eventually clog those, causing restrictions in blood flow to our heart which may lead to a heart attack.

Humans cannot simply change their blood to remove the cholesterol build-up. However, cholesterol is controlled through proper diet, exercise, and with some condition monitoring in the form of blood tests to help gauge the presence of it in the bloodstream. Similarly, a couple of approaches can be used to reduce the varnish build-up or eliminate it.

As per Livingstone et al. (2011), the lifecycle of varnish is critical. Particular attention should be paid to the double arrows between the stages of Solubility to Varnish formation in the figure below.

This means that even after varnish has been deposited, it can be solubilized back into the oil. This can only occur if conditions are met per Hansen’s Solubility principles where the solvent and degradation products meet using the three parameters of Polarity, Hydrogen Bonding, and Dispersive Forces as discussed in “The Hansen Solubility Principles and Its Relation to Varnish” (2022).

mechanisms-oil-varnish-formation

The Varnish Lifecycle as per Livingstone et al. (2011)

Varnish exists in various forms and can consist of differing compositions. Hence, it is essential to understand the characteristics of the varnish being formed in a system before attempting to eliminate it.

There are certain technologies, such as solubility enhancers or specifically engineered filtration media, which can be effective at removing lube oil varnish. However, this technology is heavily reliant on the type of varnish being formed and can be customized as per the system accordingly.

Solubility enhancers can solubilize the varnish back into the oil solution. When these deposits are reintroduced into the oil, they can be removed using resin-based filtration. In this method, the media is specifically designed to allow for the adsorption and removal of the varnish which presently exists in the oil.

When these methods are used together, they can prove quite effective and prevent manufacturing plants from experiencing unwanted downtime.

To summarize, it is of utmost importance to first understand the characteristics of the varnish being produced in your equipment before attempting to remove it from your system.

There is no cookie-cutter method to eliminate varnish from a system as it is a complex deposit. Similar to practices we observe with our bodies in the instances of cholesterol build-up, we can employ methods of dissolving the varnish and removing it while monitoring for possible recurrences in the future.

 

Want to read the entire article? Find it here on Precision Lubrication Magazine!

 

References:

Livingstone, Ameye, & Wooton. (2015.). Antioxidant Monitoring as Part of Lubricant Diagnostics – A Luxury or a Necessity? OilDoc, Rosenheim, Germany.

Livingstone, Overgaag, & Ameye. (2011). Advanced removal Techniques for Turbine oil Degradation Products. Powergen Milan.

Mathura, S. (2020). Lubrication Degradation Mechanisms (CRC Press Focus Shortform Book Program) (1st ed.). CRC Press.

The Hansen Solubility Principles and its Relation to Varnish. (2022, July 31). Fluitec International. https://www.fluitec.com/the-hansen-solubility-principles-and-its-relation-to-varnish/

Is Oil Analysis the Only Method of Varnish Detection?

Varnish will deposit in layers and adhere to the metal surfaces inside the equipment. As it continues to deposit, the layers will eventually accumulate until it reaches a point whereby it can cause significant changes to the clearances of the components.

There have been instances where shafts in rotating pieces of equipment have been moved due to the build-up varnish. This is where vibration analysis can be instrumental.

When the vibration analysis method is used, it can detect any small changes in the alignment of the shaft in rotating equipment. As varnish continues to build on the inside of the component, vibration analysts can detect if the shaft observes some misalignment over a period.

This may be easy to miss as sometimes the varnish which has built up can be wiped away, causing the shaft to resume its proper alignment. Thus, these technologies should be used in tandem before conclusions are made about the presence of varnish.

Another detection method that can be employed is the monitoring of temperature fluctuations. As stated earlier, varnish can form an insulating layer trapping heat. There have been case studies that demonstrate that bearings experiencing varnish tend to display temperature increases.

Typically, these temperature patterns assume a saw-tooth pattern where temperatures rise continuously as the varnish builds up. The varnish becomes wiped away, and the temperature is reduced drastically.

This saw tooth pattern of temperature variation is characteristic of varnish formation. In some cases, the formation of localized deposits on bearing surfaces may cause temperature escalations without a corresponding MPC increase. In this case, the bulk oil may not show any degradation, yet temperature excursions may be experienced at the bearing surface.

Want to read the entire article? Find it here in Precision Lubrication Magazine!

Can Lube Oil Varnish be Detected? 

Detecting something is the first step towards formulating a solution to minimize its effects or eliminate it from a system. In the case of varnish for lubricated assets, a few technologies are currently being used to detect its presence.

As seen at the beginning of this article, varnish can exist with various characteristics depending on the degradation mechanism which aided in its formation. For this article, the degradation mechanism of oxidation will form the main focus as it is the most prevalent pathway to lube oil varnish formation.

During oxidation, the first chemical change which can be observed in the lubricant is the depletion of the antioxidant additives. This is where the knowledge of phenols and amines is critical.

As per Livingstone et al. (2015), these antioxidants can form synergistic mixtures in mixed antioxidant systems. When the free radicals react with the phenols, they become depleted but can regenerate amines. Thereby, the phenols are sacrificial.

Thus, when performing the RULER analysis, one can find that the concentration of the phenols will typically deplete quicker than the amines. This provides the analyst with a good overview of the amount of oxidation that has taken place in the lubricant.

The RULER analysis is one of the oil analysis methods which can provide early detection of the occurrence of oxidation.

It has been shown that the physical changes, such as polymerization, will only begin after this chemical change of the depletion of antioxidants. It is at this point that the actual deposits will begin formation.

Unfortunately, oil analysis tests such as viscosity and acid number only show significant changes after the deposits have been formed. At this time, it may be too late to implement technologies to mitigate varnish formation.

The Membrane Patch Calorimetry (MPC) oil analysis test (ASTM D7843) can offer analysts insight into the estimated amount of insoluble varnish currently within the system. These results have three main ranges which identify the severity of the varnish, namely, 0-20 (Normal), 20-30 (Abnormal), and >30 (Critical). Oil analysis tests can effectively provide the operators with some awareness of the current condition of the lubricant and its tendency to form varnish.

Want to read the entire article? Find it here in the Precision Lubrication Magazine. 

What is varnish or oil degradation?

Varnish is a type of deposit that forms on the surface of equipment in lubrication systems. It is caused by the oxidation of the base oil and the buildup of additives in the oil over time, forming a sticky, varnish-like substance. Lube oil varnish can cause problems in equipment operation by clogging filters, reducing oil flow, and leading to valve sticking and pump failures.

Lube oil varnish is no stranger to the manufacturing industry. It constitutes the substance of most operators’ worst nightmares and plant managers’ ultimate fears. For those who have been in the industry for the last decade, varnish is the sticky subject that unites all facility departments.

It can cause an entire manufacturing plant to shut down while sending the finance department into a frenzy trying to balance production loss with incoming repair costs. In the fight against lube oil varnish, all teams need to work together to ensure that it can be managed and possibly eliminated from the system.

 

What Is Oil Degradation?

Before diving into the world of varnish, one must first understand how it forms and the circumstances which have led to its existence. Within the industry, the term varnish is used loosely to define any form of lubricant-derived deposit found in industrial.

However, oil can degrade by several mechanisms, which require various conditions for degradation—as such, using the term varnish to describe any deposit formed within a machine does not suggest its mechanism of formation.

The lubricant begins its degradation journey from the moment the lubricant enters the machine.

A lubricant is composed of base oil and additives, of which infinite combinations exist. Additives are carefully engineered to protect the base oil and the equipment. As such, they can become depleted over time, leading to the degradation of the lubricant.

This becomes concerning when the additive levels have depleted to a threshold where they can no longer protect the base oil or the machine. At this stage, degradation is the most serious concern because its rate is greatly accelerated.

According to Mathura (2020), there are six major forms of degradation under which a lubricant can undergo. While some may argue that these can be grouped, some characteristics set these mechanisms apart.

Each mechanism has unique environmental factors which contribute to producing different types of deposits. It is critical to note that identification of the type of mechanism can assist operators in performing remedial works on their equipment to aid in preventing the formation of varnish.

Want to read the full article? Check it out here in the Precision Lubrication Magazine.