Tagged: microdieseling

The Influence of Lubricant Selection on Degradation

Guidelines should always be followed when selecting a lubricant for a particular application. OEMs will have specific criteria ranges for specialty applications that must be satisfied. Some general guidelines which should be considered can be summarized in the table below based on the listed mechanisms above.

Based on the three listed mechanisms above, one can identify that choosing a lubricant can impact the type of degradation which occurs during its lifetime. As such, when selecting lubricants, it is critical to note their applications and the conditions they will endure.

Having a history of lubricant failures for particular equipment can also assist in this regard by informing users of past failure trends. Therefore, when selecting a lubricant, operators can be more mindful of the properties which should not be compromised during the selection process.

The process of troubleshooting degradation in lubricants has been covered in detail in the book, “Lubrication Degradation – Getting Into the Root Causes” by Bob Latino and myself, published by CRC Press, Taylor and Francis.

Want to read the entire article? Find it here in Precision Lubrication Magazine!

Which Degradation Mechanism Is Affected?

My previous article published in Precision Lubrication covered six degradation mechanisms: oxidation, thermal degradation, microdieseling, electrostatic spark discharge, additive depletion, and contamination.

Upon further investigation, there are only three mechanisms where selecting the correct lubricant will impact the degradation mode. These are; oxidation, microdieseling, and electrostatic spark discharge. The properties of the lubricant can easily influence each of these degradation mechanisms.

When selecting a lubricant, especially for rotating equipment, one of the critical areas of importance is the performance of the antioxidants. When formulated, oils must be balanced to protect the components in various aspects.

Thus, some oils that boast a high level of antioxidants may suffer from low levels of antiwear, or these increased levels can react with other components to reduce the performance of the oil. During oxidation, antioxidants are depleted at an accelerated rate which can lead to lube oil varnish. Hence, the choice of lubricant can influence this degradation mechanism.

A good trending test, in this case, would be the RULER test to accurately quantify and trend the remaining useful antioxidants for the oil. This test can easily distinguish and quantify the type of antioxidant rather than providing an estimate of the oxidation, as with the RPVOT test.

It has been noted that oils with an RPVOT of more than 1000 mins have a low reproducibility value which can mislead users during trending of lubricant degradation. Corrosion inhibitors, not just antioxidants, have also influenced the RPVOT values. Thus, there are better tests for monitoring the presence of antioxidants and helping operators to detect the onset of possible lube oil varnish.

On the other hand, during microdieseling, entrained air can lead to pitting the equipment’s internals and eventually the production of sludge or tars depending on whether the entrained air experiences a high or low implosion pressure.

If bubbles become entrained in the lubricant and do not rise to the surface, this can directly result from the lubricant’s antifoaming property. The antifoaming property is essential when selecting an oil, especially for gearboxes. Typically, OEMs will have recommendations for their components that should be followed.

Another degradation mechanism that can be influenced by lubricant selection is electrostatic spark discharge. This mechanism occurs when the lubricant accumulates static electricity after passing through tight clearances. These then discharge at the filters or other components inside the equipment, providing sharp points or ideal areas to allow static discharge.

This is frequently seen in hydraulic oils due to the very tight clearances within the equipment. If fluid conductivity is above 100 pS/m, the risk of static being produced is reduced. Some OEMs also provide particular values the lubricant should meet for this property.

 

Want to read the entire article? Find it here in Precision Lubrication Magazine!

The Six Forms of Lubricant Degradation

oil-degradation-modes_800x300-2

Oxidation

The most common form of degradation is oxidation. While this is the most recurrent form of degradation, the term is often misused to describe all forms of degradation. During Oxidation, a free radical is formed, which is highly reactive. Its primary purpose is to create other free radicals which can attack the base oil.

However, lubricants have been formulated with antioxidants. These knights in shining armor react with the free radicals to neutralize them and protect the base oil. As such, during the oxidation process, one will notice a decline in the concentration of antioxidants typically evaluated using the RULER® (Remaining Useful Life Evaluation Routine) test.

Eventually, the antioxidants become depleted, and the free radicals begin attacking the base oil. During this stage, polymerization can occur, which leads to the formation of deposits within the lubricant. Not every deposit is chemically similar.

The deposit will gain its characteristics from its environment and the products present during the chemical reaction. When these deposits occur, they can get lodged in the smaller clearances (particularly servo valves), which leads to possible malfunctioning of the equipment. Due to the nature of lube oil varnish, it can act as an insulating layer that increases the temperature throughout the equipment.

Thermal Degradation

Another form of degradation is called thermal degradation. As its name suggests, heat is one of the environmental conditions required for this degradation mechanism. During thermal degradation, the oil can experience temperatures over 200°C.

The Arrhenius equation is one of the industry’s rules of thumb whereby for every 10°C rise over 60°C, the life of the oil is essentially halved. At 200°C, the oil is cooked and produces carbon-based deposits, which is this mechanism’s characteristic type of deposit. The FTIR (Fourier Transform Infrared) test is instrumental in identifying the presence of these deposits.

Microdieseling

One can argue that microdieseling is a form of thermal degradation and should be classed as such. However, during microdieseling, air becomes entrained in the oil and moves from a low-pressure zone to a high-pressure zone.

If the oil does not have good air release properties, then the entrained air will not make its way to be dissipated at the surface. This entrained bubble in the oil can cause temperatures to rise to 1,000°C.

The bubble interface usually experiences some carbon accumulation and then implodes. This can be through a high implosion pressure which results in soot, tars, or sludge, or through a low implosion pressure which can form carbon insolubles such as coke, tars, or resins.

Electrostatic Spark Discharge

Electrostatic spark discharge may be classified under thermal degradation as it involves temperatures over 10,000°C. During this mechanism, oil builds up static electricity at a molecular level when the dry oil passes through tight clearances in the equipment.

Eventually, the static will build to a point where it produces a spark, and free radicals are formed. This can lead to uncontrolled polymerization producing varnish, sludge, or other insoluble materials. One of the tell-tale signs of this mechanism is the presence of burnt patches of membranes on the filters.

Additive Depletion

Additive depletion is often a form of degradation which gets left behind. As stated earlier, additives are sacrificial and will be depleted over time. Their purpose is to protect the lubricant and the machine, but they can be significantly depleted in some instances, leaving them vulnerable.

This type of degradation can produce two types of deposits, organic or inorganic. During degradation, rust and oxidation additives can become reacted with other components. These types of reacted additives can form organic deposits.

Alternatively, inorganic deposits such as ZDDP (Zinc dithiophosphate) can deplete and form a tenacious layer. The Depletion of ZDDP will impact the wear rate as this is the antiwear additive.

Contamination

Often, the most unrecognized form of degradation is contamination. Some may argue that this is not a form of degradation. On the contrary, this degradation mode can be the initiator for other mechanisms such as oxidation, thermal degradation, or even microdieseling.

Essentially, contamination occurs when foreign material is present in the lubricant. Often, this foreign material can become a catalyst for one of the other forms of degradation. Therefore, it must be acknowledged separately, as only the degradation mode can be eliminated by removing the contaminant.

 

Want to read the entire article? Find it here on Precision Lubrication Magazine!

Microdieseling

microdieseling

What is Microdieseling?

Microdieseling is also called Compressive Heating and is a form of pressure induced thermal degradation.

The oil goes through 4 stages in this degradation process:

1. There is a transition of entrained air from a low pressure to a high pressure zone

2. This produces localized temperatures in excess of 1000°C

3. The Bubble interface becomes carbonized

4. The oil darkens rapidly and produces carbon deposits due to oxidation

The conditions required for microdieseling can be either:

  • Low flashpoint with LOW implosion pressure
  • Low flashpoint with HIGH implosion pressure

For a low flashpoint with a HIGH implosion pressure, this constitutes to ignition products of incomplete combustion such as soots, tars and sludge

However, for a low flashpoint with a LOW implosion pressure, adiabatic compressive thermal heating degradation occurs to produce varnish from carbon insolubles such as coke, tars and resin.

stages_MD