My previous article published in Precision Lubrication covered six degradation mechanisms: oxidation, thermal degradation, microdieseling, electrostatic spark discharge, additive depletion, and contamination.
Upon further investigation, there are only three mechanisms where selecting the correct lubricant will impact the degradation mode. These are; oxidation, microdieseling, and electrostatic spark discharge. The properties of the lubricant can easily influence each of these degradation mechanisms.
When selecting a lubricant, especially for rotating equipment, one of the critical areas of importance is the performance of the antioxidants. When formulated, oils must be balanced to protect the components in various aspects.
Thus, some oils that boast a high level of antioxidants may suffer from low levels of antiwear, or these increased levels can react with other components to reduce the performance of the oil. During oxidation, antioxidants are depleted at an accelerated rate which can lead to lube oil varnish. Hence, the choice of lubricant can influence this degradation mechanism.
A good trending test, in this case, would be the RULER test to accurately quantify and trend the remaining useful antioxidants for the oil. This test can easily distinguish and quantify the type of antioxidant rather than providing an estimate of the oxidation, as with the RPVOT test.
It has been noted that oils with an RPVOT of more than 1000 mins have a low reproducibility value which can mislead users during trending of lubricant degradation. Corrosion inhibitors, not just antioxidants, have also influenced the RPVOT values. Thus, there are better tests for monitoring the presence of antioxidants and helping operators to detect the onset of possible lube oil varnish.
On the other hand, during microdieseling, entrained air can lead to pitting the equipment’s internals and eventually the production of sludge or tars depending on whether the entrained air experiences a high or low implosion pressure.
If bubbles become entrained in the lubricant and do not rise to the surface, this can directly result from the lubricant’s antifoaming property. The antifoaming property is essential when selecting an oil, especially for gearboxes. Typically, OEMs will have recommendations for their components that should be followed.
Another degradation mechanism that can be influenced by lubricant selection is electrostatic spark discharge. This mechanism occurs when the lubricant accumulates static electricity after passing through tight clearances. These then discharge at the filters or other components inside the equipment, providing sharp points or ideal areas to allow static discharge.
This is frequently seen in hydraulic oils due to the very tight clearances within the equipment. If fluid conductivity is above 100 pS/m, the risk of static being produced is reduced. Some OEMs also provide particular values the lubricant should meet for this property.
Want to read the entire article? Find it here in Precision Lubrication Magazine!