Tagged: lubricants

ICML 55 – the revolution in the lubrication sector

icml_stds

What is ICML 55?

ICML 55 is revolutionizing the lubrication industry! It is so exciting to be around at this time when it has started its implementation. For those who aren’t aware of ICML 55, here are a couple of notes on it.

ICML 55 was born out of ISO 55000 which speaks to Asset Management. From this standard, 3 standards were developed to guide the lubrication industry since no previous standards existed within the lubrication industry.

  • ICML 55.1 - Requirements for the Optimized Lubrication of Mechanical Physical Assets
  • ICML 55.2 - Guideline for the Optimized Lubrication of Mechanical Physical Assets
  • ICML 55.3 - Auditors' Standard Practice and Policies Manual

ICML 55.1 has already been completed, while 55.2 should be done at the end of this year and 55.3 scheduled for 2020.

These are exciting times!

Here’s the official press release:

https://info.lubecouncil.org/2019/04/04/icml-introduces-icml-55-asset-management-standards-mle-engineer-certification/

While ICML 55.1 was only launched in April of this year (2019), it is a standard that the lubrication industry has been in need of for several years. It addresses the “Requirements for the Optimized Lubrication of Mechanical Physical Assets”.

What exactly are the assets covered? Here they are:

  • Rotating & Reciprocating Machines, Powertrains, Hydraulic Systems and lubricated subcomponents
  • Assets with lubricants that reduce friction, wear, corrosion, heat generation or facilitate transfer of energy
  • Finished products from API categories I-V
  • Non Machinery support assets (Personnel, policies, procedures, storage facilities and management)
icml_55

There are also fluids and assets which are NOT covered:

  • Fuels, coolants, metal-working fluids, pastes, fogging agents, preservative fluids, coating materials, heat-transfer fluids, brake fluids, cosmetic lubricants
  • Solid lubricants (e.g., powders and surface treatments used as coating rather than to reduce friction between surfaces in motion)
  • Additives independent of the finished lubricant
  • Electrical transformer oils and anti-seize compounds
  • Fluids and materials derived from a petroleum or petroleum-like base
  • Fluids that do not serve a lubrication function
Photo Credit: https://info.lubecouncil.org/icml-55-standards/
Photo Credit: https://info.lubecouncil.org/icml-55-standards/

ICML 55.1 speaks to the “Requirements for the Optimized Lubrication of Mechanical Physical Assets” it also describes and defines 12 interrelated areas that can be incorporated in a lubrication program. This has never been officially documented before, nor has any standard been published as a guideline for lubrication programs.

The 12 areas are outlined below:

  1. SKILLS: Job Task, Training, and Competency
  2. MACHINE: Machine Lubrication and Condition Monitoring Readiness
  3. LUBRICANT: Lubricant System Design and Selection
  4. LUBRICATION: Planned and Corrective Maintenance Tasks
  5. TOOLS: Lubrication Support Facilities and Tools
  6. INSPECTION: Machine and Lubricant Inspection
  7. LUBRICANT ANALYSIS: Condition Monitoring and Lubrication Analysis
  8. TROUBLESHOOT: Fault/Failure Troubleshooting and RCA
  9. WASTE: Lubricant Waste Handling and Management
  10. ENERGY: Energy Conservation and Environmental Impact
  11. RECLAIM: Oil Reclamation and System Decontamination
  12. MANAGEMENT: Program Management and Metrics

As per ICML's website, here's a list of people that the new standard can benefit:

Photo Credit: https://info.lubecouncil.org/icml-55-standards/

 

Check out the ICML 55 standards today and apply it to your organization!

Lubricant Deterioration Identifications

What the difference between Shelf Life and Service Life?

There’s a major difference between Shelf life and Service life especially when it concerns lubricants!

No one wants to put expired lubricants into their equipment! This can cause unexpected failures which can lead to unplanned downtime which can continue to spiral down the costly path of unproductivity!

shelf_life_service_life

Shelf Life

The Shelf life is usually what is stamped by the Manufacturer indicating the length of time the product can remain in its current packaging before being deemed unsuitable for use. These can typically be found on the packaging.

Service Life

The Service life however is determined by the application and conditions under which the lubricant is being used. Usually, estimated running hours / mileage are given by the equipment manufacturer in the maintenance section of the manual. (Condition monitoring can also be used to determine appropriate service intervals.)

However, how will someone know if the product has deteriorated while still in its original packaging?  What should someone typically look for?

Above are some tips for identification of deterioration in lubricants. Take a note of these for the next time you are unsure of the integrity of your lubricants.

Thermal Degradation vs Oxidation

What’s the difference between Thermal Degradation and Oxidation of a lubricant?

ox_vs_td

The two major differences are the contributory factors and the by products that are produced.

For oxidation, both oxygen and temperature are critical to the degradation of the lubricant however, in thermal degradation, the temperature of the lubricant exceeds its thermal stability (usually in excess of 200°C).

Oxidation usually occurs through the release of free radicals which deplete the antioxidants however, Thermal Degradation consists of polymerization of the lubricant.

Oxidation produces aldehydes, ketones, hydroperoxides, carboxylic acids varnish and sludge. On the other hand, Thermal Degradation produces coke as the final deposit.

Microdieseling

microdieseling

What is Microdieseling?

Microdieseling is also called Compressive Heating and is a form of pressure induced thermal degradation.

The oil goes through 4 stages in this degradation process:

1. There is a transition of entrained air from a low pressure to a high pressure zone

2. This produces localized temperatures in excess of 1000°C

3. The Bubble interface becomes carbonized

4. The oil darkens rapidly and produces carbon deposits due to oxidation

The conditions required for microdieseling can be either:

  • Low flashpoint with LOW implosion pressure
  • Low flashpoint with HIGH implosion pressure

For a low flashpoint with a HIGH implosion pressure, this constitutes to ignition products of incomplete combustion such as soots, tars and sludge

However, for a low flashpoint with a LOW implosion pressure, adiabatic compressive thermal heating degradation occurs to produce varnish from carbon insolubles such as coke, tars and resin.

stages_MD

Electrostatic Spark Discharge

ESD

What is Electrostatic Spark Discharge?

Electrostatic Spark Discharge is real and extremely common for turbine users!

Static electricity at a molecular level is generated when dry oil passes through tight clearances.

It is believed that the static electricity can build up to a point whereby it produces a spark.

There are three stages of ESD.

1. Static Electricity builds up to produce a spark – Temperatures exceed 10,000°C and the lubricant begins to degrade significantly.

2. Free radicals form – These contribute to the polymerisation of the lubricant

3. Uncontrolled polymerisation – Varnish and sludge produced (some may remain in solution or deposit on surfaces) which can also result in elevated fluid degradation and the presence of insoluble materials.

Grease compatibility

comp_grease

Are all greases compatible?

We recently touched on greases being available in a wide variety based on application but the real question is, “Are all greases compatible?”

The short answer is, “No”.

All greases contain a thickener (which helps with its physical state). Thickeners vary depending on application (such as temperature, water resistance etc). As such, to verify whether two greases are compatible or not, Machinery Lubrication developed a Compatibility Chart based on thickener type.

 

You can determine the thickener type by looking at your Data Sheet or talking to your OEM.

Not all greases are compatible, so be careful when mixing greases!

Grease Thickener Types

grease_thickener_app

Grease Thickener Properties

We keep speaking about each grease being different based on their thickener type. However, what are the properties that these thickeners give to the grease?

For instance, if I wanted to use a grease for a roller bearing in a very high temperature environment which should I choose?

Can a multipurpose grease work for that application?

Each area of application may be different and while multipurpose greases are widely used there are some areas where it doesn’t add much value. For example, if a heavy equipment operator uses a backhoe to dig into a river, the multipurpose grease can be easily washed off.

When the grease washes off quickly, the pins holding the bucket can become damaged. (The costs to repair or replace one of these pins are ridiculously high!) However, if he used a Calcium based grease, then there wouldn’t be an issue of water washout and the pins could have a longer life.

Above is a table indicating the various uses of greases based on the thickener types. Know your applications and their environments when choosing the right grease!

Base oil viscosity of greases

base_oil_vis_grease

Importance of Base oil Viscosity in Greases

While we’ve focused on the variances in greases due to thickener types, we haven’t touched much on the differences in base oil viscosity.

With gear oils, we need the correct viscosity to allow the gears to turn at the required rate while still being lubricated. If the oil is too thick and the gears are high speed, then the gears will not be lubricated quickly enough and they can become damaged. Similarly, greases are made up of base oil with different viscosities.

Most greases use a viscosity of 220cSt (these are the multipurpose greases). However, greases for electric motors use a base oil viscosity of 100cSt. What’s the difference?

Well, if a multipurpose grease was used for an electric motor the energy used for that motor can be 100W however, if a grease with a base oil viscosity of 100cSt was used, the energy used could be reduced to 70W. Is this significant? Definitely YES!!!

On any manufacturing plant, there are at least 5 – 10 electric motors, in some cases there are 70 or more! If at least 25W were saved per motor per month then the company can a significantly reduced power bill at the end of the year!

Understand your applications before applying “any” grease!

Grease Thickener Temperatures

grease_thickener_temp

Understanding Grease Thickener Temperatures

The grease thickener has a crucial role in deciding the environment in which a grease should be applied.

One of the major environmental conditions revolves around the operating temperatures that greases have to endure.

If the grease goes past its dropping point then it can turn into a liquid, leak out of its designated area and cause the element to be starved for lubrication. Not to mention the mess on the outside of the component after it has leaked out.

 

Each thickener has a range of operating temperatures. However, some consideration should be applied when designating areas for the application of the grease. As indicated above, a good rule of thumb is to ensure that the application range of the grease does not exceed the Dropping point - 50C. For example, a good operating range for a simple Lithium grease can be 175-50C = 125C. This still falls within the maximum service temperature for a grease with this thickener.

Pay careful attention to your operating temperatures when selecting your grease!

Understanding NLGI

Does the NLGI grade matter?

Of course it does! That’s why it was invented and classed into different categories for various applications! NLGI stands for National Lubricating Grease Institute, they are composed of companies that manufacture and market all types of lubricating grease.

An NLGI grade can start at 000 (very fluid) to 6 (block like). However, there are different grades for different applications.

For instance, most trucks have a centralized lubrication system. As such, the grease needs to be almost fluid like to get to all the areas. In these cases, a “00” or even “000” grease may be used. However, the most common grade is a “2” grade which is seen frequently in cartridges, pails etc.  Some electric motors require a “3” grade grease instead of a “2”.

Here is a table that describes each of the grades, their applications and consistency.

Always check with your OEM to ensure that the correct NLGI grade is being used! Here is another graphic that likens these grades to more easily identifiable consistencies.