By Sanya Mathura (Strategic Reliability Solutions Ltd) & Neil Conway (Spectrolytic)
Spectrolytic’s FluidInspectIR-Inline is a comprehensive fluid monitoring system that uses an array of sensors (MIR, OPC, wear, viscometer, conductivity) to provide real time data on oil and fluid degradation parameters. At the heart of the system is a novel mid-infrared (MIR) sensor that measures the chemical composition of the fluid with parameters such as; TAN, TBN, ipH, oxidation, sulphation, nitration, water, glycol, soot, fuel dilution and additives. These can be measured, as a first in the field, with the same accuracy and in the same units as conventional labs.
There are a couple of areas where the FluidInspectIR can offer advantages as compared to traditional oil analysis. Here are a few of them:
Real Time Monitoring and Faster Results – with these online monitoring devices, users can readily get data throughout the day without waiting for the sample to be taken, shipped to a laboratory and then tested there. This significantly reduces the time between making decisions which could negatively impact the equipment’s performance. Within our industry, this time is absolutely critical as the cost of unplanned downtime for the affected assets can be millions of dollars.
Cost-Effectiveness – every time a sample is taken, there is a cost involved. The sample taking process is usually quite lengthy as often permissions have to be obtained since more organisations are trying to reduce potential health & safety risks by minimizing human-machine interactions.
Once a sample has been obtained it needs to be shipped to a laboratory. This not only has costs attached to it, but many couriers are now making it very difficult to ship oil samples. In addition, each shipment of a sample carries also an implied CO2 footprint.

As shown in figure 1 the resulting cost savings from utilizing real time inline sensors compared to other methods can be summarized as follows:
- Human assets can be utilized more effectively without allocating time for them to take oil samples
- Trend analysis based on real time; laboratory equivalent data allows the end customer to move from a time-based maintenance process to a data driven maintenance process
- Early failures can be spotted very easily and unplanned down time, the nightmare of every asset manager, can be minimized
- Oil drain intervals can be extended in a safe and controlled manner which can result in significant operational efficiency gains and reduced CO2 footprint
Accuracy and Reliability – getting an accurate representative sample using conventional oil sampling methods can be challenging at times. If the sample is taken at the wrong point (right after the filter or at a dead leg), it might not be representative of what is happening on the inside of the equipment. As such, it can completely derail the trend being established for that component and allow the users to believe that something is terribly wrong with that component.
With the FluidinspectIR online monitoring system, the sample delivery to the sensor is automated and standardized ensuring that the sample is delivered to the sensor in the correct way every time. Therefore, the users can rest assured of getting the sample taken at the right location (ensuring a proper representation of the system), at the same location (ensuring an accurate trend of the data) and with the same technique (which completely avoids any variation from human operators).
As the FluidInspectIR uses mid-infrared spectroscopy which is identical to the technique used by laboratories (FTIR), the data provided by the FluidInspectIR system has, at least, the same accuracy as those produced by a laboratory as shown in figure 2 below.

Actionable data and improved maintenance – with real time data, failures can be prevented and major unplanned downtime eliminated. With the online monitoring system, it is easier to trend an increase in wear metals, change in viscosity, water ingress or any other parameter changes which would warrant some form of maintenance intervention. This provides users with the information they need at the right time without any further delays due to shipping of samples or an inaccurate sample being sent off as shown in the case study in figure 3 where a diesel engine on a dredging vessel saw spiked concentrations of water that coincided with the vessel being moored in harbour. With the quick action of the inline sensors, they were able to save £115k over 9 months.

Data Integration and Remote Monitoring – traditionally, oil analysis results lived in databases which could be accessed electronically, or they were emailed and stored in a filing system. But these results are only available after a sample has been taken and sent off to the lab. This is how FluidInspectIR takes it a step further where assets can also be monitored remotely, in real time.
Imagine being able to monitor the conditions of a particular component while being offsite or multiple components for various sites. This can be particularly useful when trying to troubleshoot an issue related to a system process, especially across sites. This is one area that traditional oil analysis would not be able to mimic as the sample may not be taken at the exact same time as the ongoing system process therefore not allowing a correlation.
Of particular importance is the ability to trend data across multiple assets. This can be critical if there is a significant environmental factor influencing the condition of the oil which may affect many of the components in the fleet. Being able to easily and quickly detect this can be the difference between a productive day and one that has gone into unplanned downtime.