Tagged: lubricants

Multigrade vs Monograde

multi_mono

Why use multigrade instead of monograde oils?

A monograde oil does not provide the same level of protection on start-up as a multigrade oil.

With the multigrade oil, it is designed to reduce the time it takes to get from the bottom of the sump to the top of the engine (this is indicated by the number in front of the “w”).

However, the monograde oils have not been adapted for this type of technology. Thus, it takes longer to get to the top of the engine and to all the components compared to a multigrade oil.

Most wear occurs on start-up. Before we start the car on a morning, all of the oil is at the bottom of the sump, so it takes some time to get to the top and the other components. However, once we start the engine, all the parts will begin moving. If they are moving without any lubrication, then a significant amount of wear will occur!

Typically, when driving, we start the car, go to our destination and stop. Then come back and start the car again. During this time, the oil would have drained back to the bottom of the sump and now has to get back to the top. Before it gets to the components, these are still moving without lubrication, inducing wear! If we think of the number of times that we start and stop for the day (or for the month!), we will realize the amount of wear that we put our engines through.

Hence, this is one of the main reasons, that we choose multigrades over monogrades.

 

Written by Sanya Mathura, CEO & Founder of Strategic Reliability Solutions Ltd. 

Recommended oil – Automotive

oil_car

What type of oil should I use in my car?

Always follow what the OEM recommends! A quick google search can help you find the required lubricant if you don’t have the owner’s manual.

Most modern vehicles use lighter weight oils compared to older vehicles. Let’s think about cars back in 1950. They were larger, with big engines. With a big engine, it would mean that the lines carrying the oil would be larger. Thus, a heavier oil (50 weight) would be the most appropriate.

Now, fast forward to cars today. The engines are smaller, (albeit with a lot more horsepower as well!). If the size of the engine has changed, then the size of the lines carrying the lubricant will change as well. These lines will get smaller. If the lines are smaller, then the liquid that has to flow through them, should be lighter (thinner).

We can use an analogy of a straw trying to pull up molasses.

With a large straw, we could pull up the molasses faster than with a thinner straw. This is similar to the older cars, they would have thicker “straws” (lines) that would have allowed them to adequately pump the lubricant.

In the newer cars, the straw has gotten thinner, so it can’t pull up the molasses anymore. If we tried to pull up water instead, it would definitely flow faster than the molasses and not have as much strain on the person pulling up the water (pump in the engine). Hence, lighter oils are used in modern cars.

Most recommendations can be found by contacting the OEM or even doing a bit of Google searching with the year of manufacture for the car and of course the model.

Written by Sanya Mathura, CEO & Founder of Strategic Reliability Solutions Ltd. 

ICML 55 – the revolution in the lubrication sector

icml_stds

What is ICML 55?

ICML 55 is revolutionizing the lubrication industry! It is so exciting to be around at this time when it has started its implementation. For those who aren’t aware of ICML 55, here are a couple of notes on it.

ICML 55 was born out of ISO 55000 which speaks to Asset Management. From this standard, 3 standards were developed to guide the lubrication industry since no previous standards existed within the lubrication industry.

  • ICML 55.1 - Requirements for the Optimized Lubrication of Mechanical Physical Assets
  • ICML 55.2 - Guideline for the Optimized Lubrication of Mechanical Physical Assets
  • ICML 55.3 - Auditors' Standard Practice and Policies Manual

ICML 55.1 has already been completed, while 55.2 should be done at the end of this year and 55.3 scheduled for 2020.

These are exciting times!

Here’s the official press release:

https://info.lubecouncil.org/2019/04/04/icml-introduces-icml-55-asset-management-standards-mle-engineer-certification/

While ICML 55.1 was only launched in April of this year (2019), it is a standard that the lubrication industry has been in need of for several years. It addresses the “Requirements for the Optimized Lubrication of Mechanical Physical Assets”.

What exactly are the assets covered? Here they are:

  • Rotating & Reciprocating Machines, Powertrains, Hydraulic Systems and lubricated subcomponents
  • Assets with lubricants that reduce friction, wear, corrosion, heat generation or facilitate transfer of energy
  • Finished products from API categories I-V
  • Non Machinery support assets (Personnel, policies, procedures, storage facilities and management)
icml_55

There are also fluids and assets which are NOT covered:

  • Fuels, coolants, metal-working fluids, pastes, fogging agents, preservative fluids, coating materials, heat-transfer fluids, brake fluids, cosmetic lubricants
  • Solid lubricants (e.g., powders and surface treatments used as coating rather than to reduce friction between surfaces in motion)
  • Additives independent of the finished lubricant
  • Electrical transformer oils and anti-seize compounds
  • Fluids and materials derived from a petroleum or petroleum-like base
  • Fluids that do not serve a lubrication function
Photo Credit: https://info.lubecouncil.org/icml-55-standards/
Photo Credit: https://info.lubecouncil.org/icml-55-standards/

ICML 55.1 speaks to the “Requirements for the Optimized Lubrication of Mechanical Physical Assets” it also describes and defines 12 interrelated areas that can be incorporated in a lubrication program. This has never been officially documented before, nor has any standard been published as a guideline for lubrication programs.

The 12 areas are outlined below:

  1. SKILLS: Job Task, Training, and Competency
  2. MACHINE: Machine Lubrication and Condition Monitoring Readiness
  3. LUBRICANT: Lubricant System Design and Selection
  4. LUBRICATION: Planned and Corrective Maintenance Tasks
  5. TOOLS: Lubrication Support Facilities and Tools
  6. INSPECTION: Machine and Lubricant Inspection
  7. LUBRICANT ANALYSIS: Condition Monitoring and Lubrication Analysis
  8. TROUBLESHOOT: Fault/Failure Troubleshooting and RCA
  9. WASTE: Lubricant Waste Handling and Management
  10. ENERGY: Energy Conservation and Environmental Impact
  11. RECLAIM: Oil Reclamation and System Decontamination
  12. MANAGEMENT: Program Management and Metrics

As per ICML's website, here's a list of people that the new standard can benefit:

Photo Credit: https://info.lubecouncil.org/icml-55-standards/

 

Check out the ICML 55 standards today and apply it to your organization!

Written by Sanya Mathura, CEO & Founder of Strategic Reliability Solutions Ltd. 

What’s the Difference between Shelf Life vs Service Life?

What the difference between Shelf Life and Service Life?

There’s a major difference between Shelf life and Service life especially when it concerns lubricants!

No one wants to put expired lubricants into their equipment! This can cause unexpected failures which can lead to unplanned downtime which can continue to spiral down the costly path of unproductivity!

shelf_life_service_life

Shelf Life

The Shelf life is usually what is stamped by the Manufacturer indicating the length of time the product can remain in its current packaging before being deemed unsuitable for use. These can typically be found on the packaging.

Service Life

The Service life however is determined by the application and conditions under which the lubricant is being used. Usually, estimated running hours / mileage are given by the equipment manufacturer in the maintenance section of the manual. (Condition monitoring can also be used to determine appropriate service intervals.)

However, how will someone know if the product has deteriorated while still in its original packaging?  What should someone typically look for?

Above are some tips for identification of deterioration in lubricants. Take a note of these for the next time you are unsure of the integrity of your lubricants.

Written by Sanya Mathura, CEO & Founder of Strategic Reliability Solutions Ltd. 

Thermal Degradation vs Oxidation

What’s the difference between Thermal Degradation and Oxidation of a lubricant?

ox_vs_td

The two major differences are the contributory factors and the by products that are produced.

For oxidation, both oxygen and temperature are critical to the degradation of the lubricant however, in thermal degradation, the temperature of the lubricant exceeds its thermal stability (usually in excess of 200°C).

Oxidation usually occurs through the release of free radicals which deplete the antioxidants however, Thermal Degradation consists of polymerization of the lubricant.

Oxidation produces aldehydes, ketones, hydroperoxides, carboxylic acids varnish and sludge. On the other hand, Thermal Degradation produces coke as the final deposit.

Written by Sanya Mathura, CEO & Founder of Strategic Reliability Solutions Ltd. 

Microdieseling

microdieseling

What is Microdieseling?

Microdieseling is also called Compressive Heating and is a form of pressure induced thermal degradation.

The oil goes through 4 stages in this degradation process:

1. There is a transition of entrained air from a low pressure to a high pressure zone

2. This produces localized temperatures in excess of 1000°C

3. The Bubble interface becomes carbonized

4. The oil darkens rapidly and produces carbon deposits due to oxidation

 

The conditions required for microdieseling can be either:

  • Low flashpoint with LOW implosion pressure
  • Low flashpoint with HIGH implosion pressure

For a low flashpoint with a HIGH implosion pressure, this constitutes to ignition products of incomplete combustion such as soots, tars and sludge

However, for a low flashpoint with a LOW implosion pressure, adiabatic compressive thermal heating degradation occurs to produce varnish from carbon insolubles such as coke, tars and resin.

Written by Sanya Mathura, CEO & Founder of Strategic Reliability Solutions Ltd. 

stages_MD

Electrostatic Spark Discharge

ESD

What is Electrostatic Spark Discharge?

Electrostatic Spark Discharge is real and extremely common for turbine users!

Static electricity at a molecular level is generated when dry oil passes through tight clearances.

It is believed that the static electricity can build up to a point whereby it produces a spark.

There are three stages of ESD.

1. Static Electricity builds up to produce a spark – Temperatures exceed 10,000°C and the lubricant begins to degrade significantly.

2. Free radicals form – These contribute to the polymerisation of the lubricant

3. Uncontrolled polymerisation – Varnish and sludge produced (some may remain in solution or deposit on surfaces) which can also result in elevated fluid degradation and the presence of insoluble materials.

Grease compatibility

comp_grease

Are all greases compatible?

We recently touched on greases being available in a wide variety based on application but the real question is, “Are all greases compatible?”

The short answer is, “No”.

All greases contain a thickener (which helps with its physical state). Thickeners vary depending on application (such as temperature, water resistance etc). As such, to verify whether two greases are compatible or not, Machinery Lubrication developed a Compatibility Chart based on thickener type.

 

You can determine the thickener type by looking at your Data Sheet or talking to your OEM.

Not all greases are compatible, so be careful when mixing greases!

 

Written by Sanya Mathura, CEO & Founder of Strategic Reliability Solutions Ltd. 

Grease Thickener Types

grease_thickener_app

Grease Thickener Properties

We keep speaking about each grease being different based on their thickener type. However, what are the properties that these thickeners give to the grease?

For instance, if I wanted to use a grease for a roller bearing in a very high temperature environment which should I choose?

Can a multipurpose grease work for that application?

Each area of application may be different and while multipurpose greases are widely used there are some areas where it doesn’t add much value. For example, if a heavy equipment operator uses a backhoe to dig into a river, the multipurpose grease can be easily washed off.

When the grease washes off quickly, the pins holding the bucket can become damaged. (The costs to repair or replace one of these pins are ridiculously high!) However, if he used a Calcium based grease, then there wouldn’t be an issue of water washout and the pins could have a longer life.

Above is a table indicating the various uses of greases based on the thickener types. Know your applications and their environments when choosing the right grease!

 

Written by Sanya Mathura, CEO & Founder of Strategic Reliability Solutions Ltd. 

Base oil viscosity of greases

base_oil_vis_grease

Importance of Base oil Viscosity in Greases

While we’ve focused on the variances in greases due to thickener types, we haven’t touched much on the differences in base oil viscosity.

With gear oils, we need the correct viscosity to allow the gears to turn at the required rate while still being lubricated. If the oil is too thick and the gears are high speed, then the gears will not be lubricated quickly enough and they can become damaged. Similarly, greases are made up of base oil with different viscosities.

Most greases use a viscosity of 220cSt (these are the multipurpose greases). However, greases for electric motors use a base oil viscosity of 100cSt. What’s the difference?

Well, if a multipurpose grease was used for an electric motor the energy used for that motor can be 100W however, if a grease with a base oil viscosity of 100cSt was used, the energy used could be reduced to 70W. Is this significant? Definitely YES!!!

On any manufacturing plant, there are at least 5 – 10 electric motors, in some cases there are 70 or more! If at least 25W were saved per motor per month then the company can a significantly reduced power bill at the end of the year!

Understand your applications before applying “any” grease!

Written by Sanya Mathura, CEO & Founder of Strategic Reliability Solutions Ltd.