As the name suggests, antioxidants prevent oxidation; thus, it is no surprise that they are also called Oxidation inhibitors. During the refining of the base oil, the natural antioxidants are typically stripped away.
Thus, additional antioxidants must be added to the finished lubricant to ensure it does not oxidize as quickly. It is important to note that antioxidants can reduce the amount of oxidation that occurs but will not stop it completely.
Some of the natural antioxidants in base oils include polycyclic aromatics and sulphur and nitrogen heterocyclics6.
During oxidation, acids, and peroxides are typically produced. Antioxidants added to finished lubricants usually contain hindered phenols and ZDDPs (zinc dialkyldithiophosphates). These will suppress the formation of the acids produced in these reactions.
Dedicated antioxidants are amines, phenols, and sometimes ZDDP, which also function as an antiwear additive. Antioxidants account for 3-7% of European and North American diesel and gasoline additive packages for finished lubricants6.
As mentioned earlier, antioxidants are not the only additives that have a role to play in protecting the equipment. Antioxidants often work together with detergents to help prevent corrosive wear, especially in engines.
Some moisture and acidic combustion by-products can enter the engine during oxidation and form acids. Detergents can help to reduce corrosive wear caused by these acids. Alkylphenols are often used as a substrate in the preparation of detergents; as such, they also exhibit some antioxidant properties.
It must also be noted that extreme pressure additives containing sulphur or phosphorus may also suppress oxidation. Contrarily, these additives decompose at very moderate temperatures, so their strength as an antioxidant is not generally promoted10.