Tagged: engineer

What are some innovations and future trends of Viscosity Index Improvers?

Innovations in Viscosity Index Improvers

As per Mortier, Fox, & Orszulik (2010), the three most important commercial VII families represent critical commercial techniques for manufacturing high molecular weight polymers. These are polymethacrylates produced by free radical chemistry, olefin copolymers produced by Ziegler chemistry, and hydrogenated styrene-diene or copolymers produced by anionic polymerization. While they are critical, these formulations will not be discussed in detail in this article, but we will take a look at some of the innovations within this space.

PARATONE®a, a family of viscosity index improvers currently belonging to Chevron Oronite, boasts of having developed the first Olefin Copolymer VII (Mid Continental Chemical Company Inc, 2024). However, upon further investigation, it must be noted that Exxon Chemicals was the original developer behind this product. Back in 1998, Oronite Additives, a division of Chevron Chemical Co. LLC, acquired the assets of Exxon Chemical’s Paratone crankcase olefin copolymer (OCP) Viscosity Index Improver Business (Chevron Chemical Co. LLC, 1988).

This particular Viscosity Index Improver has seen developments since the 1970s and offers solid and liquid VIIs for companies to include in their formulations (Chevron Oronite, 2024). It also allows improved formulating flexibility for developers, which can significantly reduce the costs involved or specialized base stocks depending on the product to be made. This is just one company that specializes in producing VIIs for the wider global market.

There are many other companies that have innovated in the Viscosity Index Improver space, but most of this work is patented as it involves heavy-balanced formulations. Other companies have also innovated on the production side of the VIIs by engineering equipment that can help produce a higher-quality VII.

Future Trends

(Future Market Insights, 2024) estimates the Viscosity Index Improver market will be USD 4.06B in 2024 and will increase to USD 5.39B by 2034. Additionally, in 2024, vehicle lubricants account for around 51.6% of the VII market. This is not just limited to the multigrade oils but includes transmission fluids, greases, and other oils. On the other hand, with the move towards more sustainable oils, Ethylene propylene Copolymer (OCP) is projected at a 30.4% industry share in 2024. Given the move towards more sustainable products, this is expected to increase.

If we take a global view of the compound annual growth rate (CAGR) per country to 2034, we can find some interesting facts. The United States shows a CAGR of 1.6%, with a heavy allocation towards more vehicle engine oil use and the manufacturing sector for pharmaceuticals and chemicals. On the other hand, Spain is projected to see a CAGR of 2.2% with auto manufacturers and power generation equipment (hydraulic oils, turbine oils, and greases).

Venturing to China, they have a CAGR of 3.2% due to the increased number of vehicles and significant industrialization. Their involvement in complex machinery will also drive this growth. The United Kingdom is positioned to see a CAGR of 1.1% resulting from its rise in high-performance engines and heavy industrialization. On the other hand, India should experience a CAGR of 4.3% with its high demand for industrial production, commerce, and automobiles.

Figure 2: CAGR% per country to 2034
Figure 2: CAGR% per country to 2034
  • With these positive CAGRs, it is conclusive that there will be a lot of growth within the VII industry. (Future Market Insights, 2024) also list some of the recent developments in the VII Market, which include:
  • In July 2023, Chevron Phillips Chemical announced a capacity expansion of its VII productions to meet the increasing demand for VIIs in the automotive and industrial sectors.
  • In April 2023, Lubrizol introduced a new line of viscosity index improvers (VIIs) for automotive lubricants, claiming to offer enhanced performance, including improved oxidation and thermal stability.
  • In March 2023, ABB completed the Marunda 2.0 oil blending plant extension project, doubling production capacity within three years despite challenges during the pandemic.
  • In October 2022, LCY Chemical Corp., a Taiwanese material science company, showcased its thermoplastic elastomer portfolio at K 2022. It highlighted its innovative approach to material science for a sustainable future, backed by a global distribution network.
  • In August 2022, Evonik’s Oil Additives division in CIS countries partnered with ADCO to enhance the energy productivity and effectiveness of industrial lubricants for construction, agriculture, mining, and manufacturing equipment.

From this, the future of Viscosity Index Improvers can only be enhanced by several of the major key players expanding their operations and innovating their creations to adapt to ever-evolving standards/guidelines set by OEMs and governments. As new regulations emerge regarding improved efficiency, increased oxidation stability, and thermal stability for lubricants, VII developers will be challenged to innovate new solutions for the lubricants to conform.

References

Chevron Chemical Co. LLC. (1988, October 08). Oronite Additives Acquires Exxon’s Paratone Viscosity Improver. Retrieved from Pharmaceutical Online: https://www.pharmaceuticalonline.com/doc/oronite-additives-acquires-exxons-paratone-vi-0001

Chevron Oronite. (2024, June 29). PARATONE® viscosity modifiers. Retrieved from Oronite: https://www.oronite.com/products-technology/paratone-products.html

Future Market Insights. (2024, April 15). Viscosity Index Improver Market Forecast by Vehicle and Industrial Lubricant for 2024 to 2034. Retrieved from Future Market Insights: https://www.futuremarketinsights.com/reports/viscosity-index-improvers-market

Gresham, R. M., & Totten, G. E. (2006). Lubrication and Maintenance of Industrial Machinery – Best Practices and Reliability. Boca Raton: CRC Press.

Mid Continental Chemical Company Inc. (2024, June 29). Viscosity Modifiers / Viscosity Improvers. Retrieved from Mid-Continental Chemical Company: https://www.mcchemical.com/lubricant-additives/viscosity-index-improvers

Mortier, R. M., Fox, M. F., & Orszulik, S. T. (2010). Chemistry and Technology of Lubricants – Third Edition. Dordrecht: Springer.

What impact do Viscosity Index Improvers have on Efficiency, Wear, and Degradation?

If we filled a swimming pool with honey during the winter when no heating was available, the honey would crystallize and become more viscous. Hence, if anyone tried to walk through the pool, moving would be difficult and require more energy. However, if heating was available to the pool, then the honey would be more fluid, and someone could walk a bit more freely (although still sticky at the end of the day!). As such, they would not have to exert as much energy.

The same applies to lubricants and their viscosities. If the lubricant is too viscous (thick honey in the winter), then more energy is required for the components while they are moving. For systems with varying temperatures, finding a lubricant that can maintain the desired viscosity for those changes is challenging.

However, with the invention of Viscosity index improvers, oils can now maintain a desired viscosity at variable temperatures. This significantly affects the energy the system requires and can reduce the energy needed, making some systems more efficient.

As such, the system’s overall efficiency is impacted, and less energy is required to overcome the internal frictional forces of the lubricant (as its viscosity remains within the required range). Passenger car engine oils saw this change with the integration of VIIs when multigrade oils were invented. They no longer needed one oil for summer and another oil for winter. This significantly saved many owners from draining and replacing their oils seasonally or finding their oil frozen in the winter!

Viscosity index improvers, therefore, enhance the overall efficiency of these systems by maintaining the lubricant’s viscosity throughout the changing temperatures. Subsequently, there is no need for additional heaters in the lube oil system, which would also require additional energy. This is another area where cost and energy savings can also be achieved.

Maintaining a particular viscosity at variable temperatures allows the lubricant to form a full film (also known as hydrodynamic or elastohydrodynamic lubrication) between the two surfaces, thus offering them protection from wear.

If the viscosity became reduced (due to an increase in temperature without the VII), then the lubricant would not form a full film or experience boundary or mixed lubrication. In this case, there is the potential for increased wear, which will negatively impact the components in the system. As such, using VIIs can also reduce the potential occurrence of wear or aid in reducing wear.

As per (Gresham & Totten, 2006), this does not mean that the viscosity never changes. When the viscosity of a lubricant changes, its viscosity index will change accordingly. If the viscosity index decreases, this can likely be because of the breakage of the polymeric Viscosity Index Improver polymer molecules to produce smaller chains, which essentially reduce its originally intended effect. If there is a reduction in the molecular weight of the VII, then the lubricant will see a reduced viscosity at both 40 & 100°C. This also reduces the temperature related viscosity effect.

Viscosity Index Improvers significantly improve a system’s overall efficiency and can help reduce wear. However, these additives can degrade over time with high temperatures and shear stress.

What is the role of Viscosity Index Improvers in Lubricants?

Viscosity Index Improvers began their commercial debut around the 1950s to accommodate the new developments in automotive oils, which were then adapting multigrade viscosities. However, they were used even before (back in the 1930s) when workers in crude distillation realized that small amounts of rubber improved the VI of the oil but also increased sludge formation.

Today, VIIs are still primarily used as engine lubricants. They can also be found in automatic transmission fluids, multipurpose tractor transmission fluids, power steering fluids, shock absorber fluids, hydraulic fluids, manual transmission fluids, rear axle lubricants, industrial gear oils, turbine engine oils, and aircraft piston engine oils. (Mortier, Fox, & Orszulik, 2010)

Essentially, VIIs try to maintain the oil’s viscosity at varying temperatures. They try to ensure that the oil does not experience a loss of viscosity, which can occur due to high temperature or shear. VIIs can be considered polymers, which are tightly wound coils. When temperature or shear is applied to these coils, they unravel (lose their viscosity). Depending on the amount of shear, they may never recover their original shape (or viscosity).

As seen in Figure 1 below, Mortier, Fox, & Orszulik (2010) describe the change in the shape of the VIIs as a result of high temperature or shear. They can coil and uncoil depending on the shear stress, but if the bonds are broken, they will not reform their original coil and lose their intended viscosity.

Figure 1: Mechanical Polymer Degradation (excerpted from (Mortier, Fox, & Orszulik, 2010)
Figure 1: Mechanical Polymer Degradation (excerpted from (Mortier, Fox, & Orszulik, 2010)

Interestingly enough, it must be noted that some VIIs provide lubricants with additional functions of Pour point depression and dispersancy. This is highly dependent on their composition.

What are Viscosity Index Improvers?

Viscosity Index Improvers (VIIs) are additives that help maintain the viscosity of lubricating oils across a wide temperature range, ensuring consistent performance.

This article will explore the nature of viscosity index improvers and their role in industrial and automotive lubricants. We will also look at their impact on lubricant efficiency, innovations involving this type of additive, and future trends.

Before discussing the nature of viscosity index improvers, we need to understand the role of viscosity. Essentially, this is one of the most critical functions of a lubricant, as it directly affects its flow rate and ability to keep the two interacting surfaces apart.

By nature, all base oils have an assigned viscosity based on their blend. However, other properties are required when we’re creating finished industrial or automotive lubricants. For instance, we may need the oil to withstand higher temperatures while still maintaining a particular viscosity, which not only provides wear protection for the equipment but also flows at a rate that does not incur frictional losses. Those are a lot of functions!

Typically, as temperature increases, viscosity decreases, and as the temperature decreases, the viscosity increases. One example is the state of water: when heated, it can turn into a gas (lower viscosity), or when frozen, it can transform into ice (higher viscosity). However, depending on the type of material, there will be varying rates of viscosity change with temperature. The viscosity/temperature relationship is called the viscosity index (VI).

As per Mortier, Fox, & Orszulik (2010), the kinematic viscosity of oil is measured at 40°C and then at 100°C. The viscosity change is then compared with an empirical reference scale initially based on two sets of crude oils: a Pennsylvania crude arbitrarily assigned a VI of 100 and a Texas Gulf crude assigned a VI of 0.

The higher the VI, the less effect that temperature has on the oil, which means that the oil can maintain a particular viscosity for a longer time at a more extensive temperature range. This is ideal for lubricants in environments experiencing temperature changes. However, not all oils have a high viscosity index. Typically, paraffinic oils can have a very high viscosity index. On the other hand, naphthenic oils have a low or medium viscosity index. The table below gives an overview of the viscosity index for various oils.

Table 1: Viscosity index of API Groups I-III
Table 1: Viscosity index of API Groups I-III

When trying to manage or alter the viscosity index of the oils above, the use of Viscosity Index Improvers (VII) can help by adding that property to an oil to allow it to have other beneficial properties. As per (Mortier, Fox, & Orszulik, 2010), viscosity index improvers consist of five main classes of polymers:

  • Polymethylmethacrylates (PMAs).
  • Olefin copolymers (OCPs).
  • Hydrogenated poly (styrene-co-butadiene or isoprene) (HSD/SIP/HRIs).
  • Esterified polystyrene-co-maleic anhydride (SPEs)
  • A combination of PMA/OCP systems.

Why are there so few Registered Female Engineers in Trinidad & Tobago?

sanya in front of factory copy

Sanya Mathura, explores the question of why there are so few Registered Female Engineers in Trinidad & Tobago with the Board of Engineering Trinidad & Tobago

 

Engineer Sanya Mathura, BSc. MSc. MLE, FLCAT I, MAPETT, R.Eng.

 

For more info on the BOETT check out their website: www.boett.org

As International Women in Engineering Day approaches, we reflect on the number of female registered engineers in Trinidad & Tobago, what may hamper their decision to move forward with this registration and ways to get more women involved in this industry.

With the recent announcement of the expected 11-year lifespan of the oil & gas sector in Trinidad and Tobago, there is a looming question of what the economy will look like in the next two decades. Trinidad and Tobago is not a newcomer to this sector and in fact has over 100 years’ experience in this space. However, with the reserves dwindling and the job security of thousands of people at risk, it is important to plan for the future where all of our citizens can contribute to, and enjoy the benefits of, a thriving economy.

Engineering plays a critical role in the economic development of any country. It underpins the public infrastructure that we utilize daily: roads, water, the Internet and more. It is also the means by which medical and other instrumentation is designed, built and maintained. Engineering can be viewed as one of the foundational pillars of a society. Without a doubt, the integrity of the engineering profession and engineers themselves is therefore critical to our safety and well-being.

Registration with a certifying body, in the case of Trinidad and Tobago, the Board of Engineering, BOETT, validates claims made by engineers regarding their credentials, and that they have satisfied a rigorous assessment of professional commitment as well as competency in accordance with recognized professional standards. Engineers registered with the Board of Engineering of Trinidad & Tobago are accountable to conform to a legislated Code of Ethics in their interactions with the public, employers, and clients; are obliged to protect the public health, safety and welfare; and are called to demonstrate competency, objectivity and confidentiality in all of their professional work.

According to the BOETT, as of 2024, there are 1026 registered engineers, 16% of whom are female. This low percentage is not an anomaly, as there are countless studies which have demonstrated the critical need for gender balance in science, technology, engineering and math (STEM). In this article, we will examine the potential sources of the marked gender imbalance among registered engineers in Trinidad and Tobago, as well as strategies that can be employed to encourage greater levels of registration.

Figure 1: Snapshot of the percentage of overall Registered Female Engineers by discipline as per the BOETT (2024)
Figure 1: Snapshot of the percentage of overall Registered Female Engineers by discipline as per the BOETT (2024)

A closer look at the BOETT registration gender split by engineering discipline shows how that 16% or 166 female registered engineers have been distributed.

While the highest number of female registered engineers reside in the Civil Engineering discipline (83), this only accounts for 19% females in that field. On the other hand, Chemical engineering shows a higher percentage of female registered engineers at 37% but this translates to 26 female engineers as shown in Figure 1.

Engineering has been a traditionally male populated industry globally and this trend is also seen in our twin island country. Since the BOETT registration requires 4 years of engineering experience and evidence of further learning equivalent to a Master’s degree, it is critical to examine the trends in propagation from the Bachelor’s to Master’s Degrees.

According to The University of the West Indies[1], the Engineering Faculty has seen a steady instream of undergraduate enrolments over the last five years averaging around 1100 students.

However, not all these students go on to the postgraduate level. In fact, the enrolment values of postgraduates are almost half of the undergraduate students. This trend is evident for the year 2023 where only 31% of the number of undergraduate students who leave the University pursue and attain a postgraduate degree in Engineering as shown in Figure 2.

Figure 2: Propagation rate of Undergraduate to Postgraduate Engineering students at The University of the West Indies
Figure 2: Propagation rate of Undergraduate to Postgraduate Engineering students at The University of the West Indies

Upon a deeper dive into the data for the Electrical and Computer Engineering Department, we notice that the number of female undergraduate students generally remains above a 15% threshold for the past 5 years. This is particularly interesting as the percentage of female students continually increases and almost doubles (except for the year in which COVID commenced) as shown in Figure 3.

Figure 3: Overview of the percentage of female vs male undergraduate students in the Department of Electrical & Computer Engineering, The University of the West Indies over a five year period (2018-2023)
Figure 3: Overview of the percentage of female vs male undergraduate students in the Department of Electrical & Computer Engineering, The University of the West Indies over a five year period (2018-2023)

Interestingly enough, when we look at the data for the enrolment of students into Postgraduate Engineering programs it is encouraging to see that there is a higher percentage of women enrolling into these postgraduate programs compared to the undergraduate level as shown in Figure 4 below. Unfortunately, the percentage declines as the postgraduate program continues resulting in a lower overall number of students (both male and female).

Figure 4: Enrolment of Female vs Male Postgraduate Engineering students for the period 2018-2023 in The University of the West Indies
Figure 4: Enrolment of Female vs Male Postgraduate Engineering students for the period 2018-2023 in The University of the West Indies

There are similar trends in UK and US based Universities. As per the National Center for Science and Engineering Statistics (NCSES)[2] there has been an increase in female students pursuing Engineering degrees in the last 10 years at both the undergraduate and postgraduate levels in the United States of America as shown in Figure 5.

Figure 5: Comparison of female students at undergraduate and postgraduate engineering degrees from 2011 to 2020 in the United States
Figure 5: Comparison of female students at undergraduate and postgraduate engineering degrees from 2011 to 2020 in the United States
Figure 6: Comparison of female students at Undergraduate vs Postgraduate Engineering degrees in the United Kingdom for 2020-2023
Figure 6: Comparison of female students at Undergraduate vs Postgraduate Engineering degrees in the United Kingdom for 2020-2023

In the United Kingdom according to the Higher Education Student Statistics[3] the percentage of female undergraduate engineering students remained around the same for the last three years (2020-2023), averaging around 17% while the postgraduate female engineering students increased to roughly 27% as shown in Figure 6.

When looking at the actual numbers for the UK, it is quite surprising that the number of undergraduates remains fairly constant with a typical drop off around 300-500 female engineering students to postgraduate studies. However, there is a larger drop with the male students pursuing their postgraduate engineering degrees as per Figure 7 below.

Figure 7: Number of female vs male students in the UK for undergraduate and postgraduate engineering degrees
Figure 7: Number of female vs male students in the UK for undergraduate and postgraduate engineering degrees

What are some of the challenges faced by women in engineering?

While the numbers for registered female engineers may seem a bit dismal, we need to examine why there’s such a drop off between obtaining an undergraduate degree and becoming a registered engineer. Typically, one qualifies to become a registered engineer only after they have gained an evidential level of engineering competency through work experience in the field. Is this the area where we are losing our female engineers?

 

Globally, it has been observed that after 5 years within the industry, female engineers usually either leave the discipline entirely or transfer to another non-technical role. There are a number of reasons why this occurs. Based on interviews with many female engineers some of the reasons cited include; lack of basic needs (such as clean bathroom facilities, lactating rooms for new mothers), the presence of microaggressions, lack of safety (especially regarding ill-fitting PPE) and even the basic concept of remaining unheard or unrecognized for their contributions.

Figure 8: Some main challenges faced by women in male populated environments
Figure 8: Some main challenges faced by women in male populated environments

Figure 8 shows an overview of some of the main challenges for women in male populated workplaces. This includes:

Societal expectations and beliefs about women’s leadership abilities – in these scenarios, women’s voices are almost left unheard, and their contributions are ignored. When trying to lead a team, it may be difficult for them to gain respect of the other team members if the team members do not fully believe in their leadership strategies.

Pervasive stereotypes, such as that of the “caring mother” or office housekeeper – often, women are assigned these duties in addition to their own job responsibilities which detracts from their time to perform the work assigned to them. Due to these “stereotypes”, they are also not taken seriously in their roles as leaders or when they try to add value to the team as their team members only perceive that they can add value in the stereotypical roles.

Higher stress and anxiety compared to women working in other fields – women constantly feel the need to always be at their best in these industries. They spend more time working on projects to ensure that they are familiar with every detail as they will be questioned on it and may even have to do the “prove it again” concept where they are asked to prove their findings multiple times before they are believed. In non-male populated environments, women can freely assume leadership roles without the stress or anxiety of whether their work will be questioned.

Lack of mentoring and career development opportunities – women are often passed over for promotions without the help of sponsors in their organizations. Mentors can also help in creating introductions for women in these fields and aid in their networking to help them in their career development. Mentors play a critical role for women in these fields as they can establish bonds and stronger networks to be considered for other opportunities (within and outside of the organization).

Sexual harassment – unfortunately, this occurs in the workplace too often especially for women and depending on the circumstances of its occurrence, it can leave the victims fearful of coming to work, which negatively impacts on their performance in the workplace. Additionally, there is also the fear of reporting a senior manager or supervisor for their inappropriate behaviour. The women in these situations may be victimized and even have trouble in reporting the incident as the report would not be taken seriously.

While the list above is not exhaustive, these are just scratching the surface of some of the issues women face in such a male populated discipline.

Coping mechanisms

Quite often this leads to women finding coping mechanisms to deal with some of the challenges listed above. As shown in Figure 9, these include:

Distancing themselves from colleagues, especially other women – if you realize that this is occurring with one of your female or male colleagues, then check in on them. Find out what you can do to support. Very often, they just need to be supported or not to feel alone in the situation they are facing. Your support could mean the difference between them leaving the industry entirely.

Accepting masculine cultural norms and acting like “one of the boys,” which exacerbates the problem by contributing to the normalization of this culture – becoming part of the “boys’ club” is not the answer when trying to fit in. Eventually, women lose their authenticity and the unique perspective that they can bring to different situations. It is very important for women in these fields to remain true to themselves and bring their personality to work, that’s what will help us to evolve. This change in the “norm” will help to bring a diverse sense of thinking to create more solutions.

Leaving the industry - Women sexually harassed at work are 6.5 times as likely to change jobs[4] often to one with lower pay. We are losing our workforce because we’re not standing up for our women who have had this experience. These women feel that they need to leave the industry to be in a safe environment where they are not harassed. We should not have such an unwelcoming environment for women or men.

Figure 8: Some main challenges faced by women in male populated environments
Figure 8: Some main challenges faced by women in male populated environments

The aforementioned list is just a few of the coping mechanisms that women have used over time to handle challenges within this industry. If you see one of these mechanisms being used, then take some time to chat with the person.

These coping mechanisms are not just strategies that women use; they can also be used by men. As our brother’s / sister’s keeper, we should look out for each other and continue to support each other.

Finding solutions

Women are entering these male populated fields and changing them for the better. We cannot continue to do things the same way and expect different results. Evolution can only occur if there are significant changes.

Traditionally, jobs were associated with particular genders as these required certain characteristics. For instance, some jobs required physical strength which assumed a male candidate. However, with the advent of technology and tools which can be used by both men and women, many of these jobs now have level playing fields because of these. But society has not caught up with these changes.

As such, women are still faced with challenges in these male populated environments. It is our duty to all work together to create safer environments for women, recognize when there is an issue and come together to solve the issue as a team. This is the only way we can all move forward in these industries.

Currently, we are on the brink of having a major skills gap shortage that the future generation will be responsible for filling. How are we preparing them for these roles? We need to be the change that the future generation sees. If they can “see” more registered female engineers, we can have more female engineers in the future.

Board certification is the only legislated professional credential for engineers practicing in Trinidad and Tobago. For that reason, this credential is most valuable in that it represents, among other things, a commitment to a legislated code of ethics which serves to protect the public interest, elevate the level of professionalism in engineering practice and brings more value and benefits to engineering stakeholders, including the public, clients, employers, and practicing engineers themselves.[5] 

The accreditation and verification of experience, knowledge and skills which accompanies registration with the BOETT has the potential to reduce some of the barriers faced by women in these fields.

Generally, with more female engineers, we can expect more inclusive workplaces and an increase in the diversity of thought to create better solutions. Registration strengthens the credibility of practicing engineers especially female engineers.

It is important to the profession and to enable the growth of a community where registration is encouraged, and its value emphasized. Various strategies are required to purposefully empower more women to allow them to drive change in our workplaces and by extension, our lives.

We need to change the conversation towards having a more inclusive workplace for both men and women in engineering. This is the only way we can truly move forward with developing our country and ensuring that our greatest resource (our people) can be a part of that. Let’s get more women and men to become registered engineers in our country.

End notes

[1] (The University of the West Indies | St Augustine Campus, 2023)

[2] (National Center for Science and Engineering Statistics (NCSES), 2023)

[3] (Higher Education Statistics Agency, 2023)

[4] (Blackstone, McLaughin, & Uggen, 2017)

[5] (Lezama, 2024)

 

References

Blackstone, A., McLaughin, H., & Uggen, C. (2017). The Economic and Career Effects of Sexual Harassment on Working Women. Sage Journals. doi:https://doi.org/10.1177/0891243217704631

Higher Education Statistics Agency. (2023). Higher Education Student Statistics: UK, 2021/2022 - Subjects Studied SB265. Cheltenham, GL50 1HZ: HSEA.

Lezama, V. (2024, June 04). Are you a Board-Registered Engineer? Your career success may depend on it. Trinidad & Tobago.

National Center for Science and Engineering Statistics (NCSES). (2023). Diversity and STEM: Women, Minorities, and Persons with Disabilities 2023, Special Report NSF 23-315. Alexandria, VA: National Science Foundation. Retrieved from https://ncses.nsf.gov/wmpd

The University of the West Indies | St Augustine Campus. (2023). Student Statistical Digest 2018/2019 to 2022/2023. St Augustine: Prepared by the Campus Office of Planning and Institutional Research.

 

About the author

Sanya Mathura is the Founder of Strategic Reliability Solutions Ltd based in Trinidad & Tobago and operates in the capacity of Managing Director and Senior Consultant. She works with global affiliates in the areas of Reliability and Asset Management to bring these specialty niches to her clients. She holds her BSc in Electrical and Computer Engineering, MSc in Engineering Asset Management and is an ICML certified MLE (Machinery Lubrication Engineer) – the first person in the Caribbean. Sanya was also the first female in the world to achieve the ICML Varnish badges (VIM & VPR) and again the first female globally to attain the Mobius FL CAT I certification (as per their public records). She is also the first engineer to be registered with the Board of Engineering of Trinidad and Tobago in the specialist category of Machinery Lubrication Engineer.

She sits on the Editorial board for Precision Lubrication Magazine and is a digital editor for Society of Tribologists and Lubrication Engineers (STLE)’s TLT Magazine for 2024 and columnist for Equipment Today Magazine. She also sits on the board for the Lubricant Expo North America.

She is the author and co-author of six books; Lubrication Degradation Mechanisms, A Complete Guide, Lubrication Degradation – Getting into the Root Causes, Machinery Lubrication Technician (MLT) I & II Certification Exam Guide and “Preventing Turbomachinery ‘Cholesterol’ – The Story of Varnish.” She has also been assigned the Series Editor of the book series, “Empowering women in STEM” with the first book being launched in Dec 2022, Empowering Women in STEM – Personal Stories and Career Journeys from Around the World and the second in March 2024 called, Empowering Women in STEM – Working Together to Inspire the Future. When not writing or managing the business, you can find her supporting projects to advocate for women in STEM.

An Engineer, Entrepreneur, Author and Activist: – Expertise in reliability and lubrication engineering and advocacy for women in STEM

sanya in front of factory copy

A Chat with Engineer Sanya Mathura, one of the New Faces of Engineering in Trinidad and Tobago with the Board of Engineering Trinidad & Tobago

 

Engineer Sanya Mathura, BSc. MSc. MLE, FLCAT I, MAPETT, R.Eng.

 

For more info on the BOETT check out their website: www.boett.org

Sanya is a young Engineer, entrepreneur and author with a distinguished record of achievement and with many first associated with her accomplishments. She is the first engineer to be registered with the Board of Engineering of Trinidad and Tobago in the specialist category of Machinery Lubrication Engineer and before that, the first female in the Caribbean to become an ICML certified Machinery Lubrication Engineer (MLE) and sits on the board for this exam. Sanya was also the first female in the world to achieve the ICML Varnish badges (VIM & VPR), and again, she was the first female in the world to achieve the Mobius Institute FL CAT I (Field Lubrication Analyst) certification. Sanya is the Managing Director of Strategic Reliability Solutions Ltd, a consulting firm which she founded and which specializes in helping clients improve their asset reliability and maintenance practices across a wide range of industries, including oil and gas, manufacturing and transportation, locally and across the globe.

 

Sanya holds a Bachelor's degree in Electrical & Computer Engineering as well as a Masters in Engineering Asset Management and has over 15 years’ experience in industry. She has been recognized for her exceptional work in the field of reliability and lubrication engineering and her expertise in developing and implementing asset management strategies, risk assessments, and root cause analysis has earned her a reputation as a subject matter expert. Apart from being the author and co-author of six technical books in her area of specialty, when not writing or managing her business, she is an activist supporting projects for women in STEM and has been assigned the Series Editor of the book series by CRC Press, Taylor & Francis, “Empowering women in STEM”.

 

Sanya is an active member of several professional organizations, including the International Council for Machinery Lubrication and writes technical papers for several organizations. She is also a sought-after speaker and has presented at various conferences and seminars on the topics of reliability engineering and lubrication. She is part of the editorial board for Precision Lubrication Magazine and writes a lot of technical articles on various platforms. She is also part of the Advisory board for the Lubricant Expo North America & The Bearing Show North America. Sanya is also a digital editor for the STLE (Society of Tribologists and Lubrication Engineers) TLT magazine and writes a column for the Equipment Today magazine.

 

Sanya's passion for excellence, coupled with her expertise in the field of engineering and reliability, has made her a respected and highly sought-after professional in the industry. Her dedication to providing exceptional service to clients and her commitment to staying up-to-date with the latest industry trends has earned her the respect of her peers and the admiration of her clients.

Q1. Can you provide an overview of your academic and professional background, including relevant training related to machinery lubrication engineering?

I am a proud graduate of the University of the West Indies, St Augustine campus where I completed my BSc in Electrical & Computer Engineering and afterwards, my MSc in Engineering Asset Management. After getting my Bachelors, I worked in the industry for 2 years before joining Shell Lubricants as their Technical Advisor for Trinidad & Tobago. This is when I fell in love with reliability as I realized that lubrication is the lifeblood of machines and essentially affects every part of the operation.

It was during my time with Shell that I decided to pursue my MSc and wrote my thesis on lubricant degradation. While writing my thesis, I realized that I wasn’t producing the quality of work that I should be and decided to quit my job (with no back up plan!).

During that time, I reached out to several global experts to assist with some research that I was doing for my thesis, and they all knew someone who knew something. Then I thought, wouldn’t it be great, if there was a hub in Trinidad & Tobago where people could go to for Reliability Solutions from trusted experts…but it had to be Strategic. That’s how Strategic Reliability Solutions was formed, and the vision has never strayed.

We continue to provide quality information, consulting, and training services globally with trusted affiliates in the USA, Canada, Australia and the UK to our clients within the Caribbean and across the globe.

Q2. As a newly Registered Engineer in the specialist category of Machinery Lubrication Engineering, what motivated you to pursue a career in this field, and what specific skills or experiences do you bring to this role?

While I’m newly registered with the BOETT, I’ve been in machinery lubrication for the past decade. I’ve received training in Houston, the Caribbean and got to work with globally recognized product application specialists in this field for several years. After writing my first book, “Lubrication Degradation Mechanisms – A Complete Guide” published by CRC Press, Taylor and Francis, I decided to earn my MLE (Machinery Lubrication Engineer) certification from ICML (International Council for Machinery Lubrication).

This is one of the highest levels of certifications that they offer and while it is advised to build your way up to this badge by earning the other badges (MLT, MLA, LLA) because of my extensive work with supporting customers in lubrication related issues globally, I was sufficiently prepared to pursue this certification and got it.

Afterwards, I wrote a couple more internationally published technical books such as:

With my background in engineering and extensive knowledge of machinery lubrication, I am equipped to help customers with their challenges in this arena.

Q3. Could you discuss a challenging lubrication problem you encountered in your work experience? How did you approach and solve it?

We had a client in Qatar who began experiencing some issues with their hydraulic lifters for a particular machine. These lifters got jammed at an ad-hoc rate and caused a lot of unplanned downtime for them. They had to keep stopping the equipment, cleaning the system, and then restarting the equipment which caused some losses in production. They were not performing oil analysis as they did not recognize this component as being critical to their operation hence they did not monitor it.

We worked with them to re-evaluate all their components throughout the plant (determining which ones were critical, semi-critical and non-critical). Then, evaluated the lubricants being used, ensured that they were all meeting the required standards and specifications. Next, with the information gathered, we curated an oil analysis program which aligned with their plant and all its equipment.

From the data collected through oil analysis, we were able to spot when the issue with the hydraulic system began to appear again. The condition of the oil drastically changed after their technician performed a top up. The results also revealed that there were some additives specific to gear oil which were appearing in the hydraulic oil samples.

Apparently, the technician kept topping up the hydraulic systems with gear oil (used in another area of the plant). They thought that any oil should work and used the closest oil to their location (which in this case was the gear oil). We did some training and reorganization of their storage and handling practices, so now, their system is working without any more delays due to the incorrect oil being used.

Q4. In your opinion, what are the most important properties or characteristics to consider when formulating a lubricant for a specific application? How do you prioritize these factors?

There are a lot of things to consider when formulating a lubricant. The most important characteristic is viscosity. One of the main purposes of a lubricant is to reduce friction between two surfaces. It can only do so if it provides an adequate reduction in the coefficient of friction. When formulating lubricants, it’s all about balance.

There should be enough additives to enhance, suppress or add new properties to the base oil. Various types of oils have different ratios of additives to base oil, for example turbine oils usually have only 1% additives while motor oils have 30% additives. That means 1% of additives in turbine oils need to be formulated to have the right amount of oxidation resistance, wear protection, viscosity index improvers and many more which do not counteract each other.

When formulating oils, we must look at the application, the load, the speed, and the environment before even thinking about the formulation. There are complex calculations to determine the correct viscosity (largely based on the load, speed and in some cases temperature).

Understanding the metallurgy of the components is also helpful in the formulation of the lubricant as this can dictate which additives can and cannot be used.

Lubricant formulators also work alongside OEMs to ensure that the lubricant is meeting their specifications as it relates to the efficiency of the machine as well as any regulatory standards.

Q5. How do you stay updated on advancements in lubricant technology and industry best practices? Can you provide examples of any recent developments or trends that have caught your attention?

I read a lot, especially content from OEMs, Global lubricant suppliers and attend a lot of webinars where experts are sharing their knowledge. Being a part of the Precision Lubrication Magazine Board, STLE (Society of Tribologists and Lubrication Engineers) Digital TLT magazine and a columnist for Equipment Today magazine also mean that I have access to this type of content.

I am also the co-chairperson for the Lubrication & Reliability Virtual Summit which features speakers from across the globe within this area. I help to organize and facilitate and participate in some of the discussions for the various regions, AMER (Americas), APAC (Asia-Pacific) and EMEA (Europe- Middle East & Africa).

I was also on the advisory board for the Lubricant Expo North America and facilitate workshops across the globe especially in the Kingdom of Saudi Arabia, UK, USA and other regions.

Additionally, I work with a global group of consultants specific to the lubrication industry with its headquarters in Australia. We all work together on challenges from our customers and have knowledge sharing sessions which helps to keep each other informed about the latest trends.

Q6. Describe your experience with conducting tribological testing and analysis. What methods or techniques have you used to evaluate the performance of lubricants under different operating conditions?

I am not a lab personnel nor do I have access to a lab. My expertise lies in interpreting the reports and relaying this information to the customer along with recommendations on how to solve some of the challenges they may be experiencing. I work with global labs to help my customers to understand what is happening inside their equipment and develop a solution for these challenges.

Q7. Lubricant selection is critical for maximizing equipment performance and lifespan. How do you approach the process of selecting the most suitable lubricant for a given application?

This varies for every piece of equipment. The first part is to understand what the OEM requires of the lubricant, what the lubricant should be able to tolerate before pushing it outside of its operating envelope.

Most OEMs have tolerance limits based on environmental and/or operating conditions as well as industry standards. For instance, if we’re looking at turbine oils, many people make a comparison of their spec sheets (TDS – Technical Data Sheet) with the values given.

Often, they look at the RPVOT value (Rotating Pressure Vessel Oxidation Test) which gives a value in minutes (estimating the lifespan of the turbine oil). This should not be done, especially since the RPVOT is not a repeatable test in that, if it is performed 10 times, it will yield 10 different results.

Additionally, the result is given in minutes (the length of time for the oil to attain a particular characteristic in the test) which is not easily related to the field. Instead, for a better comparison of oils (in particular turbine oils), it may be a wise decision to perform the TOPP (Turbine Oil Performance Prediction) test where the oil is stressed for 4-6 weeks (with catalysts for oxidation such as heat, temperature, oxygen) and then their characteristics are compared. This is one of the best ways to compare oils before determining which of them to purchase in the turbine oil realm.

When evaluating oils for maximizing your equipment performance, most OEMs suggest a range of oils both mineral and synthetic and provide the operating characteristics in which these perform best. Depending on your environment, the oil can be selected accordingly.

For instance, there may be no critical applications which require the components to keep moving with minimal stressors or extra loads. In those cases, mineral oils would be the most effective and possibly last longer just because of the application.

In other instances, such as a harsh environment or high temperatures, synthetics may perform better but may still not have a longer lifespan because they can degrade quickly because of the environment. Essentially, it all depends on the application being evaluated.

Q8. Can you discuss a situation where you had to troubleshoot lubrication-related issues in machinery and the steps you took to resolve them?

We had a customer in Italy who was having some issues with the cranes on their ship. The oil was degrading quickly and continuously causing them lots of downtime. We ran the oil analysis for the oil and discovered that the viscosity was breaking down too quickly and there were lots of deposits being produced.

The crew were able to remove one of the filters and we sent it for testing but upon removal, they noticed that there were areas of the filter membrane which were burnt. This is one of the effects of ESD (Electrostatic Spark Discharge).

We were able to immediately identify this and worked with them on finding a solution to this issue. They could not make any adjustments to their current operations, so we decided to change their filters to antistatic filters. This dramatically helped to reduce the buildup of static in the oil and they do not have deposits in their oils anymore.

Q9. Effective communication and collaboration are essential in lubrication engineering, especially when working with cross-functional teams or external stakeholders. Can you provide any example of how you've successfully communicated technical concepts or recommendations to non-technical stakeholders?

Typically, when I get called into an organization it’s because something went wrong. This means that I need to be able to communicate with all the stakeholders from the CEO to the people working at the plant. I remember one high-level meeting where both the technical and C-suite members were present.

The trick to being able to deliver technical information to a mixed audience is to find common ground, for everyone. For this meeting, I started off with using an analogy of the human body to the manufacturing plant and then proceeded to explain the importance of the oil, its functions as likened to the blood in our bodies.

Then, for explaining the oil analysis results (which the technical team needed to see but the non-technical team did not fully understand), this was likened to performing blood tests and the results that we got were likened to tests for diabetes, either you are pre-, post or need to monitor.

This was a great way to get everyone in the room to understand what went wrong, and how we intended to fix it. Although, some have now referred to the plant as having type II diabetes after the meeting, they still got the message.

Q10. Finally, where do you see opportunities for innovation and improvement in the field of lubrication engineering in Trinidad and Tobago? How do you envision contributing to advancements in this area in T&T?

Trinidad & Tobago has a rich history of Oil & Gas and manufacturing. Nothing moves in these industries (or any other industry) without proper lubrication. I think it’s a concept that not many are familiar with as they are in other parts of the world. But this is where we can grow and evolve.

It’s been my mission to bring Trinidad & Tobago to the forefront in this industry. Through my internationally published technical books, presence on technical boards, articles and certifications, we are showing other Caribbean islands that we are not “too small” to partake in the conversations happening in this industry. Just recently I attained my FL CAT I (Field Lubrication – Category I) from the Mobius Institute becoming the only female in the world to attain this (as per their published records).

This is not a new accolade as I was also the first person in the Caribbean to attain the ICML MLE certification and the first female in the world to attain the ICML VIM & VPR badges.

I’m bringing the T&T name to the forefront and letting others know that we have talented people here who are willing to do the work and advance the industry through their insights.

I may write a couple more technical books in the future (having already published 4 technical books and 2 non-technical), I can safely say that it is a strong possibility. I will continue my work in advocating for more women in STEM (especially in this industry) and though my series of books, “Empowering Women in STEM” published by CRC Press, Taylor and Francis.

The first two books are already out and feature women from various parts of the globe in different industries in STEM. The third book will be out before the end of the year and the fourth is already in progress.

I firmly believe that if we all work together that we can create more opportunities for others to also shine brightly in this space and inspire the future generations.

What Happens When Defoamants, Dispersants & Detergents Are Used Up?

For the three additives we spoke about earlier, each of them is sacrificial in one way or another.

Defoamants get used up when they are called upon to reduce the foam in the oil. On the other hand, detergents and dispersants use their characteristics to suspend contaminants in the oil.

In all of these scenarios, each of these additives can be considered to become depleted over time. While performing their functions, they will undergo reactions that reduce their capability to perform them more than once.

Hence, it can be concluded that these additives become depleted over time even though they may not have physically left the oil but now exist in a different form.

The air release property of the oil is affected by the loss of defoamants. This value will see a significant rise, indicating that it takes longer for air to be released from the oil. As such, air remains in the oil in either a free, dissolved, entrained, or foam state.

Consequently, this impacts the ability of the oil to lubricate the components properly and can even result in microdieseling and increased oil temperatures in the sump.

On the other hand, as the detergents and dispersants are reduced, the capacity of the oil to hold contaminants also decreases.

Therefore, one will begin noticing that deposits may start forming on the equipment’s insides, leading to valves sticking (especially in hydraulic systems) or a general increase in the system’s temperature as these deposits can trap heat.

With the introduction of an increased temperature, the oil can begin oxidizing, leading to more deposits being formed and possibly even varnish.

Essentially, these additives are essential to the health of the oil in your system. The detergents and dispersants can help to keep your system clean (free from contaminants such as soot).

The defoamants can even reduce the risk of wear, increased temperatures to the lube system, the potential to form varnish, or the possibility of succumbing to microdieseling.

References

1 Bruce, R. W. (2012). Handbook of Lubrication and Tribology – Volume II Theory and Design – Second Edition. Boca Raton: CRC Press, Taylor & Francis.

2 Mang, P., & Dresel, D. (2007). Lubricants and Lubrication – Second Edition. Weinheim: WILEY-VCH Verlag GmbH & Co KGaA.

4 Mang, P.-I., Bobzin, P.-I., & Bartels, D.-I. (2011). Industrial Tribology Tribosystems, Friction, Wear and Surface Engineering, Lubrication. Weinheim: WILEY-VCH Verlag & Co KGaA.

3 Mortier, D. M., Fox, P. F., & Orszulik, D. T. (2010). Chemistry and Technology of Lubricants – Third Edition. Dordrecht Heidelberg: Springer.

Do Detergents Really Clean?

Traditionally, detergents were given their name as it was assumed that they provided cleaning properties to the oil, similar to laundry detergents. However, these metal-containing compounds also provide an alkaline reserve used to neutralize acidic combustion and oxidation by-products.

Due to their nature, these compounds disperse particulate matter, such as abrasive wear and soot particles, rather than removing them (in a cleaning action). There are four main types of detergents: phenates, salicylates, thiophosphate, and sulfonates4.

Calcium phenates are the most common type of phenate. They are formed by synthesizing alkylated phenols with elemental sulphur or sulphur chloride, followed by neutralization with metal oxides or hydroxides. These calcium phenates have good dispersant properties and possess a greater acid-neutralization potential.

Salicylates have additional antioxidant properties and a proven efficacy in diesel engine oil formulations. They are prepared through the carboxylation of alkylated phenols with subsequent metathesis into divalent metal salts. These products are then overbased with excess metal carbonate to form highly basic detergents.

Thiophosphonates are rarely used today as they are an overbased product.

Sulfonates generally have excellent anticorrosion properties. The neutral (or over-based) sulfonates have excellent detergent and neutralization potential. These neutral sulfonates are typically formed with colloidally dispersed metal oxides or hydroxides.

Calcium sulfonates are relatively cheap and have good performance. On the other hand, magnesium sulfonates exhibit excellent anticorrosion properties but can form hard ash deposits after thermal degradation, leading to bore polishing in engines. Barium sulfonates are not used due to their toxic properties.

Detergents in ATFs are used in concentrations of 0.1-1.0% for cleanliness, friction, corrosion inhibition, and reduction of wear3. However, these values are a bit higher in manual transmission fluids, at 0.0 – 3.0%. On the other hand, no detergents are required for axle lubricants!

Why Are Dispersants Important?

Quite often, detergents and dispersants are grouped together mainly because their functions can complement each other. As noted above, the significant difference is that dispersants are ashless, while detergents are more metal-containing compounds.

However, some ashless dispersants also offer “cleaning” properties, so the two are not mutually exclusive.

A large oleophilic hydrocarbon tail and a polar hydrophilic head group can categorize detergents and dispersants. Typically, the tail solubilizes in the base fluid while the head is attracted to the contaminants in the lubricant.

Dispersant molecules envelop the solid contaminants to form micelles, and the non-polar tails prevent the adhesion of these particles onto the metal surfaces so that they agglomerate into larger particles and appear suspended.

Ashless dispersants are, by definition, those that do not contain metal and are typically derived from hydrocarbon polymers, with the most popular being polybutenes (PIBs).

For example, dispersants are typically required in concentrations of 2-6% in ATFs and are used to maintain cleanliness, disperse sludge, and reduce friction and wear3. These values in manual transmission fluids and axle lubricants vary from 1-4%.

Are Defoamants Necessary?

Defoamants, also called antifoam additives, are found in many oils. Most oils need to keep foam levels to a minimum, and it is very easy for foam to form in lube systems due to their design and flow throughout the equipment.

When foam enters the oil, it can affect its ability to provide adequate surface lubrication. This can lead to wear occurring at the surface level, damaging the equipment.
Many oils require defoamants to provide various functions and in differing ratios depending on their application. In automatic transmission fluids (ATFs), defoamants are usually needed in concentrations of 50-400ppm to prevent excessive foaming and air entrainment3. On the other hand, for manual transmission fluids and axle lubricants, defoamants are required in slightly lower concentrations, between 50 and 300 ppm.

However, OEMs must verify these concentrations. If the concentration of defoamants is too high, this can actually increase foaming. Additionally, defoamants must be properly balanced with the other additive packages to ensure they do not negatively counteract another additive.

There are two main types of defoamants: silicone defoamers and silicone-free defoamers. Silicone defoamers are considered the most efficient defoamants, especially at low concentrations of around 1%. These defoamants are typically pre-dissolved in aromatic solvents to provide a stable dispersion.

However, there are two significant disadvantages associated with silicone defoamers. Due to their insolubility, they can easily transition out of the oil and have a powerful affinity to polar metal surfaces.

On the other hand, silicone-free defoamers are another alternative, especially for applications that require silicone-free lubricants. Such applications include metal-working fluids and hydraulics, which are used close to silicone-free ones, and even those involved in applying paints or lacquers to these pieces.

Some silicone-free defoamers include poly(ethylene glycol)s (PEG), polyethers, polymethacrylates, and organic copolymers. Tributylphosphate is also another option for defoamers4.