Common Lubrication Mistakes and How to Avoid Them

Mistakes can happen all the time, but when we repeat them, they can become a habit or, worse, be viewed as a “best practice” within our industry. In the lubrication realm, there are a few common mistakes that occur quite frequently. In some cases, the operators may not understand or be aware of the full gravity of these mistakes. In this section, we will explore ways to avoid these mistakes.

Over-Lubrication vs. Under-Lubrication

Some grease is better than no grease” is a common saying in the industry. However, there is such a thing as over-lubrication! Think about swimming pools. The pool usually has different levels: a minimum fill level, then a mid-tier level, and finally, the maximum level.

Over-lubrication of a bearing
Over-lubrication of a bearing

If we don’t fill it to the minimum level, it’s basically a puddle of water, not a swimming pool. We need a certain volume of water to function as a swimming pool. The same applies to our equipment.

We will under-lubricate our equipment if we do not provide enough grease or oil. In these cases, there is not enough lubricant to form the full required film to keep the two moving surfaces apart and perform all the lubricant functions. Therefore, there will be increased friction, wear, and heat, all leading to system inefficiencies.

On the other hand, if we filled the swimming pool beyond the maximum level, it would be pretty tricky for us to stand in it (while touching the bottom) or walk across the length of the pool without having lots of opposition from the water compared to walking across the length of the pool when it’s filled mid-way.

Something similar is happening with our equipment. If we over-lubricate it, we place additional stress on the components to perform extra work, as they must move on a thicker layer of lubricant, which will cause frictional losses. This can cause the equipment to heat up, leading to degradation of the lubricant and loss of efficiency.

Both over-lubrication and under-lubrication can be detrimental to your equipment. Instead, use the optimal level of lubricant, or (in the case of greases) use ultrasound to determine the required amount of grease for your application. In both cases, the ideal amount of lubricant is the volume at which the coefficient of friction is significantly lowered.

Choosing the Wrong Lubricant for the Application

Quite often, the wrong lubricant is chosen for the application. This can happen in several ways, whether unintentional or an error passed down through shift changes. Selecting the correct lubricant for your application begins with knowing the environmental and operational conditions and the equipment specifications.

Your first guide/resource should be the equipment’s OEM. They designed the equipment to perform within specific tolerance limits and can advise on the most appropriate lubricant given these tolerances. If they cannot be contacted, an alternative would be contacting your lubricant supplier to help determine the best lubricant based on their expertise with similar types of equipment in varying conditions.

Selecting the correct lubricant for your application begins with knowing the environmental and operational conditions and the equipment specifications.

Another misconception about selecting lubricants is that they should be chosen based on their initial cost. Instead, the total lifecycle cost of the lubricant should be considered, and the properties of the lubricant should also be factored into the decision-making process. The initial cost of the lubricant pales compared to the cost associated with unplanned downtimes, the short life span of the lubricant, and its disposal.

Inadequate Lubricant Storage and Handling

Lubricants should be handled with care. They can be affected by temperature, light, water, particulate, or even atmospheric contamination. They must be stored properly in a dry, clean, cool space (not exposed to the elements).

When transferring lubricants from larger containers into smaller ones, think of how you would perform this operation if you transferred blood from the blood bank to one of your family members. Would you use any container you found on the ground, or would you ensure that it is a sterilized container (needle or equipment)?

Lubricants can easily become contaminated with particulates, which can then be transferred to machines, leading to unplanned shutdowns. When transferring lubricants, it is critical to ensure that we do not introduce contaminants or transfer these contaminants to our equipment. We must keep the lubricants clean and free from contaminants.

Ignoring Environmental and Operational Conditions

Not all lubricants are created equally. Some are designed for harsher environments, while others can only function in regular operating conditions. Mineral oils can typically work in many circumstances. However, when higher temperatures or loads are involved, this may be a job more suited for a synthetic lubricant.

On the other hand, if the lubricants are geographically close to waterways or come into contact with them in any way, then these should be environmentally acceptable lubricants (EALs). Depending on the load and temperatures experienced by your equipment, your lubricant provider or OEM for the machinery can advise on the best-suited lubricant that will perform in these conditions.

Find out more in the full article featured in Precision Lubrication Magazine.